
November 1, 2023 @ SoCC’23

Tao Ji, Divyanshu Saxena, Brent E. Stephens and Aditya Akella

Yama: Providing Performance
Isolation for Black-Box Offloads

Offloading in today’s datacenters

2

Functions of multiple layers
• Network (L3): NAT, firewall, IDS/IPS
• Transport (L4): RDMA, TCP offload engine
• L4+ functions: Cryptography, compression
• Application (L7): Key-value cache, RPC load balancing

Most often seen on NICs – closely related to network IO

Common functions are offloaded from CPU to dedicated
accelerators for better performance, power efficiency, etc.

Entity-level sharing of NIC offloads

3

Offloads often need to be shared by high-level entities,
• e.g., first-party user/application, tenants in public clouds.
• NICs have limited capacity – hard to provision dedicated

offloads to each entity.

Performance isolation with different service levels is desired.
• Similar guarantees are provided for other resources

• e.g., link bandwidth.
• Offloads can be bottlenecks due to limited hardware

performance and/or complex logic.

Entity-level isolation is not supported today

4

Offload:
RDMA/KV Cache

Network

Entity 1 Entity 2

4x IO queues for Entity 1

Policy: entities share bottleneck performance equally

Same # of CPU cores

achieved thorughput
ideal throughput

De facto per-queue fairness!

Problem: How to provide entity-level isolation guarantees
with different service levels for existing offloads?
Target policy: weighted max-min fairness of throughput

5

Challenge 1: no local scheduling

6

Existing offload functions (and NICs) can be black boxes
• fixed in hardware (ASIC)
• sourced from third-party vendors
• e.g., RDMA, cryptography, compression, etc.

Such offloads are hard to update with extra mechanisms to enforce
entity-level isolation locally.

• These black boxes can be widely deployed.
• Local schedulers [e.g., PIFO (SIGCOMM ‘16)] do not apply.

Idea: schedule operations just before issuing to hardware!

Insight: Controlled queuing can favor an entity over another

7

Queue buildup triggers
default queuing discipline

KV Cache

Workload composition can be
changed when queues are empty

ToR Switch

Small RPC
requests

KV Cache

ToR Switch
Need to carefully match
issued throughput with
offload’s throughput!

But, too empty queues
cause starvation

Can also be NIC

Challenge 2: unknown throughput

8

Offloads can have different and varying throughput due to
• complexity of logic
• hardware resources provisioned at a time

Black-box offloads cannot be instrumented to provide
• entity-level scheduling
• explicit feedback (throughput or congestion signals, e.g., ECN)

Idea: probe for throughput!

As such, isolation techniques that assume fixed throughput or rely
on support from bottleneck do not apply

• e.g., Seawall (NSDI ‘11), FairCloud (SIGCOMM ‘12)

Probing for throughput

9

Strawman: observing throughput completed by offload
• Underestimation if applications don’t have enough workload

to saturate offload

Idea: “backfilling” – generating just enough synthetic workload to
saturate offload

• offload throughput = application + synthetic workload throughput
• careful not to hurt application throughput

Putting scheduling and probing together

10

KV Cache

Network

Local NIC

Yama

Local host
Entity
weights 0.5 0.5

Initial rate limit: 5

Synthetic
workload

Scheduling

Scheduled throughput achieved:
Rate limit: 5 à 6

RPC responses

Round 1

Putting scheduling and probing together

11

KV Cache

Network

Local NIC

Yama

Local host
Entity
weights 0.5 0.5

Rate limit: 6 Matches offload throughput
and achieves fairness
according to entity weights

Round 2

What does this run on?

Executing scheduling and probing routines

12

Strawman: using dedicated CPU core(s)
• Heavy resource overhead
• Hard to keep up with bandwidth scaling

Insight: applications spend many cycles busy polling for events
such as RPC responses and RDMA CQEs.

• These cycles would be “wasted” if we don’t leverage them

Idea: “cycle scavenging” – executing Yama scheduling and probing
routines with application busy-polling cycles!

Cycle scavenging with libYama

13

tput *
weightTime for

next op?

need
probing Synthetic

ops
Probing

telemetry
Entity

weights
Shared
memory

post poll

Local NIC

App/RPC
libYama

App/RPC
libYama

Entity 1 process

Entity 2 process

Entity 1 process

App/RPC

libYama

Cycle scavenging with libYama

14

App/RPC

App op
polled

Synthetic
op polled

Local NIC

Synthetic
ops

Probing
telemetry

Entity
weights

Entity 1 process

App/RPC
libYama

App/RPC
libYama

Shared
memory

post poll

Entity 1 process

Entity 2 process

libYama

Other problems

15

Offload can be shared by multiple remote nodes!
• Elect a leader node to execute probing routine
• Followers exchange telemetry and probed throughput with

leader

See our paper for more details

Offloads can form chains!
• We treat an offload chain as a black-box offload
• Complication: chains share bottleneck offload

• Probing-scheduling feedback loop makes sure bottleneck
is equally shared by chains

Evaluation overview

16

1. Can Yama achieve weighted sharing of offload?

2. Can Yama fairly share common bottleneck of two chains?

3. Does cycle scavenging significantly slow down app ops?

Q1: Can Yama achieve weighted sharing of offload?

17

Offload

Network

Entity 1 2 3
Weight 0.4 0.2 0.4

IO queues 60% 20% 20%

One offload at each level:
• KV Cache: L7
• RDMA: L4
• NAT: L3

Yama should allocate, compared to
default queuing discipline, less
throughput to Entity 1, despite more
queues, and vice versa for Entity 3.

Policy

Q1: Can Yama achieve weighted sharing of offload?

18

������#! ���� ���

�""%(�

���

��

���

��

���

��

�
*
�
�
,
$(
'
�(
"�
"�
$*
�+
#
�
*
!

��
�
�)
+

��
	

��

��

�

	�
��

�
��
�

��

�� ��
� ��

�

��
�

��
	

��
�

��

��
�

�
�

�
�
$*
�+
#
�
*
!

��'$%%� ��&� �',$,-�� �',$,-�� �',$,-��

Entity 1 2 3
Weight 0.4 0.2 0.4

Yama achieves entity
weights consistent with

policy in all three scenarios.

Q2: Can Yama fairly share common bottleneck of two chains?

19

App1 App 2 App 3

25 Gbps

Weight ratio 3 : 2

Network

20 Gbps 20 GbpsSoftware
NIC

Emulated
offloads

Shared bottleneck

Q2: Can Yama fairly share common bottleneck of two chains?

20

App Vanilla Yama
Tput (Gbps) % Tput (Gbps) %

(Total) 22.31 100 23.79 100
1 7.54 33.8 11.66 49.0
2 7.39 33.1 7.33 30.8
3 7.38 33.1 4.80 20.2

Yama fairly splits
throughput between
two chains.

Weighted fairness
achieved within a chain.

Synthetic ops don’t hurt
application throughput

Q3: Does cycle scavenging significantly slow down app ops?

21

 � � � �

�!! * ��,#*(-"#)-,����)+�

�

�

��

��

��

	��

�
�
,

'
�
.
��
�+
�

���

 � � � 	� 	
 	� 	�
�

	�

�

��

��

�

��
���

��'$%%���� ��'$%%����� ��&���� ��&�����

Adding <3μs tail latency
even at >90% high loads

Conclusions

22

• Entity-level performance isolation for black-box offloads is desired

• Yama uses synthetic ops to probe for bottleneck offload
throughput and based on it schedules application ops.

• Yama scavenges application busy-poll cycles to run probing and
scheduling routines.

• Yama achieves entity-level fair sharing of bottleneck throughput
for individual offloads and offload chains with low overhead.

Thank you!

