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ABSTRACT
The sharing of clusters with various on-NIC offloads by high-
level entities (users, containers, etc.) has become increasingly
common. Performance isolation across these entities is de-
sired because the offloads can become bottlenecks due to the
limited capacity of hardware. However, the existing works
that provide scheduling and resource management to NIC of-
floads all require customization of the NIC or offloads, while
commodity off-the-shelf NICs and offloads with proprietary
implementation have been widely deployed in datacenters.
This paper presents Yama, the first solution to enable per-
entity isolation in the sharing of such black-box NIC offloads.
Yama provides a generic framework that captures a common
abstraction to the operation of most offloads, which allows
operators to incorporate existing offloads. The framework
proactively probes for the performance of the offloads with
auxiliary workload and enforces isolation at the initiator side.
Yama also accommodates chained offloads. Our evaluation
shows that 1) Yama achieves per-entity max-min fairness for
various types of offloads and in complicated offload chaining
scenarios; 2) Yama quickly converges to changes in equilib-
rium and 3) Yama adds negligible overhead to application
workload.

CCS CONCEPTS
• Networks→ Cloud computing; In-network processing;
Programmable networks.

KEYWORDS
In-network computing, offload, performance isolation, black-
box approach

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624792

ACM Reference Format:
Tao Ji, Divyanshu Saxena, Brent E. Stephens, and Aditya Akella.
2023. Yama: Providing Performance Isolation for Black-Box Of-
floads. In ACM Symposium on Cloud Computing (SoCC ’23), Octo-
ber 30–November 1, 2023, Santa Cruz, CA, USA. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3620678.3624792

1 INTRODUCTION
NIC offloading has emerged as an important approach to
continue scaling up application performance with increas-
ing network line-rates in a post-Denard era [37, 69]. For
example, RDMA can provide ultra-low latency, high band-
width, and high message rate and these properties have
enabled novel datacenter application designs that leverage
RDMA to achieve higher performance than using tradi-
tional network stacks [7, 15, 22, 23, 25, 28, 40, 44, 67].
Further, other application-specific offloads have been used
to accelerate important applications like ML [62], network
transport [2, 46, 59], load balancing [19], key-value stores
and caches [7, 23, 24, 38, 67], and distributed transac-
tions [25, 67]. In general, NIC offloads can reduce latency, in-
crease throughput, and save CPU cycles by performing some
application computation with custom in-network processors.

However, in datacenter environments, many different enti-
ties share the network [63]. For example, there are typically
many different containers and applications sharing the same
infrastructure, and each back-end service is typically shared
by a large number of front-end applications [3]. When differ-
ent applications compete without explicit isolation policies,
the performance received by an entity is an ad-hoc side-effect
of the workload and how individual devices process work.
Typically, most devices default to policies like first-come, first-
served (FCFS), first-in, first-out (FIFO), and per-queue/per-
flow fairness. As a result, it is often the case that the entity that
requests for the most service gets it at the detriment of other
entities. This leads to priority inversions where entities per-
forming unimportant background work can starve important
applications and significantly increase the application-level
latency of entities performing important online work [73].

Unfortunately, many important NIC offloads are black
boxes that do not provide intrinsic support for entity-level
sharing, and we believe that this will continue to hold true in
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the future. For example, RDMA is a widely deployed NIC of-
fload that only supports eight different priorities through DCB
and otherwise defaults to per-queue pair fairness [16, 73]. The
offloads used by Microsoft for inference also do not provide
primitives for perfromance isolation [62]. As such, without
outside intervention, priority inversions are expected anytime
one of today’s offloads is shared across more than eight enti-
ties.

Ideally, it would be possible to layer support for multi-
entity isolation on top of existing on-NIC offloads so that they
can be safely shared in datacenter environments. However,
in practice, there are many challenges that arise with provid-
ing isolation support for black-box offloads. In addition to a
lack of support for isolation, offloads may be one-sided and
have variable throughput [16, 23, 24, 29], and be arranged in
heterogeneous chains [37]. As a result, static approaches like
rate-limiting are not appropriate because they lead to either
under- or over-utilization. Similarly, other approaches that
use TCP-like feedback loops based on signals like packet
loss and delay [5, 18, 31] can take too long to converge and
cause underutilization, especially for short-lived workloads
and suffer from congestion from microbursts.

To address this multi-entity isolation problem, this paper
introduces Yama, a new system that allows end hosts to layer
multi-entity isolation on top of a network of offloads. Yama
supports arbitrary black-box offloads and can provide isola-
tion regardless of how the workload and usage pattern impacts
the throughput of the offload. Yama supports general policies
that are aligned with the existing resource allocation policies
that are used in datacenters like providing weights that are
equal to the proportion of CPUs allocated to an entity. Yama
is also efficient in that it provides consistent high throughput
while ensuring that offloads are not overloaded, with mini-
mum overheads.

To provide these properties, Yama uses the following com-
ponents: a generic queue pair interface, a new approach to
throughput probing and rate pacing, and explicit throughput
sharing through a coordinating overlay network. The generic
queue pair model provides a common abstraction that can be
used to pace work requests to an offload, e.g., packets, RDMA
verbs, KVS GETs/SETs, and more. By transparently backfill-
ing dummy work on application workload, Yama dynamically
measures the current performance of an offload. The overlay
network improves the efficiency of Yama by allowing a clus-
ter of hosts to converge to appropriate rates and to minimize
the potential overhead imposed by backfilling.

Evaluation shows that:
(1) Yama achieves per-entity weighted sharing of throughput

with all the representatives of network-, transport- and
application-layer offloads that process different types of
workload.

(2) Yama achieves per-entity weighted sharing of throughput
in complicated cases when entities share offload chains
with common offloads, which may or may not be the
performance bottlneck.

(3) Yama converges to equilibrium changes much quicker
than state-of-the-art software-based congestion control
designed for low-latency RDMA.

(4) Yama incurs negligible latency to individual pieces (pack-
ets/operations/RPCs) of application workload.

In summary, this paper makes the following main contribu-
tions:
(1) Identifying the lack of entity-level isolation in network

offloads and chains, as well as the black-box nature and
other challenges in achieving entity-level isloation for
existing offloads.

(2) Introducing a generic, end host-based approach to over-
load feedback and control for heterogeneous black-box
offloads that converges in short time scales with minin-
mum application-observed performance costs.

(3) Implementing and evaluating a prototype of Yama on
real testbeds, showing it is effective, fast-converging and
efficient in achieving multi-entity performance isolation
for invididual and chained heterogeneous offloads.

2 MOTIVATION
Offloads implemented on SmartNICs provide an important
avenue to continue scaling up the application performance in
the post-Denard era. Unfortunately, many SmartNIC offloads
provide poor per-entity isolation, where an entity in this paper
refers to the finest granularity that an operator wants to pro-
vide isolation at, i.e., the leaves in the isolation policy graph.
Typically, we assume that this is an application/container. In
this section, we discuss state of the art in the use of SmartNIC-
based offloads in datacenters and the cloud. Then, this section
discusses the per-entity isolation problem and sheds light on
the major challenges that arise in tackling the problem.

2.1 Offloading in datacenters
NIC offloading (“offloading” in the rest of this paper) is a
technique that delegates a part of a host’s CPU computation
onto the host’s network interface card (NIC). Offloading can
help overcome the widening gap between network bandwidth
and the CPU’s processing performance [27, 37, 62]. While
CPU performance has stagnated since the end of Denard scal-
ing [63, 69], offloads can continue to increase performance
by leveraging their location in the network to reduce com-
munication latency and overheads and by leveraging custom
hardware to perform application-specific computation, im-
proving efficiency and saving CPU cycles.
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The space of offloads and applications that benefit from
offloading is large – there are many recent systems that have
shown that NIC offloading can be used to accelerate a vari-
ety of different applications [2, 7, 8, 11, 16, 19, 23, 25, 27,
33, 35, 38, 39, 42–44, 46, 51, 52, 54, 57, 59, 62, 64, 66].
For example, this includes offloads that range from simple
network- and transport-layer functions such as NAT (network
address translation) [11], cryptography [37], and TCP seg-
mentation/generic receive [27, 66], to entire transport engines
such as TCP [2, 46, 59] and RDMA [16, 75]. In addition,
some application-level functionality can also leverage NIC
offloading both for improving latency/throughput and sav-
ing CPU cycles. Examples of such higher-level offloads in-
clude caching for key-value stores [27, 38, 51] and distributed
transactions [25, 52]. Additionally, offloading is particularly
appealing for functionality that involves per-packet or per-
message processing – the NIC is a natural and ideal location
to take over some or all of such processing.

2.2 Multi-entity isolation
An important requirement in datacenters is the ability to ef-
fectively multiplex the underlying infrastructure – which now
includes accelerators that can be offloaded – among multiple
entities, where an entity can be an application, a user, a tenant,
etc. As entities share offloads in interesting ways, it becomes
important for datacenter operators to systematically support
cross-entity performance isolation.

Specifically, in a datacenter, it is often the case that multiple
entities may be simultaneously utilizing the same resource.
In this scenario, a system that provides performance isolation
will ensure that an entity that attempts to request for more
of the resource cannot cause the performance experienced
by another entity to deteriorate. However, we argue that it
is also important to provide performance isolation such that
a datacenter operator specifies a policy that determines the
appropriate fair-share level of service for each entity, and
each entity should be able to receive their share of service
regardless of the behavior of the other entities. For example,
an operator might wish to use the relative proportion of CPUs
allocated per entity to define the relative share of throughput
of a bottlenecked offload that each entity should receive.

Unfortunately, most offloads suffer from performance isola-
tion problems. Because existing offloads lack intrinsic support
for entity-level allocation and isolation, priority inversions
can occur, where a priority inversion occurs any time one
entity achieves a higher level of service than its fair share
when multiple entities are bottlenecked at the same offload.

We demonstrate this by running two experiments - first
using a key-value cache and then, an RDMA offload. For both
experiments, we run the offload on one of the servers in our
cluster, while on other servers, we set up two entities to run
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Figure 1: Mismatch between achieved throughput and as-
signed weight.

the workload generator for the offloads. Further, we allocate
an equal amount of CPU cores to the two entities, but Entity
1 uses 4 IO queues per core while Entity 2 only uses one IO
queue per core. The cluster topology, offload, and workload
generator are the same as in Section 6. Ideally, the operator
would like to have both entities achieve equal throughput in
accordance with their CPU allocation. However, as shown in
Figure 1, Entity 1 achieves 4x throughput of Entity 2, which
merely achieves lower than 0.5x of its fair share of throughput.
This is fundamentally due to the fact that it is much cheaper
for the CPU to submit workload to offloads compared to
performing all the computing.

The performance isolation problem is further exacerbated
by the fact that many NIC offloads do not run at the line
rate due to limited capacity of the underlying hardware. This
makes offloads more susceptible to becoming bottlenecks. For
instance, a well-known problem with even the state-of-the-art
RDMA offload is that the NIC’s on-board memory cannot
cache all the connection and memory access state and has
to frequently access the host’s main memory, which causes
degradation of operation rates [23, 24, 48]. Other below-line
rate offload examples include hardware implementations of
cryptography (AES-256), authentication (SHA-3), and com-
pression (LZRW1) [37]. Therefore, datacenters need a novel
design to provide entity-level performance isolation in terms
of service level for bottlenecked offloads.

2.3 Challenges
Key challenges arise in systematically supporting per-entity
isolation in the presence of NIC offloads in production data-
centers.
Black-box Offloads: While offloads offer significant benefits,
a key challenge is their black-box nature. In many production
datacenter networks, the on-NIC hardware units that imple-
ment offloads (and in many cases, the NICs themselves) are
sourced from third-party vendors. In such cases, the offload’s
implementation and internal details are hidden from the data
center operators. This means that, in practice, it is not possible
to modify these offloads to provide support for multi-entity
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isolation. Although some future offloads may provide mech-
anisms for multi-entity isolation like programmable sched-
uling [61, 65], it is unlikely that all offloads will implement
these mechanisms, and current programmable scheduling de-
signs have scalability limitations [65]. Further, there is the
practical issue that there exist offloads like RDMA that are
already widely deployed but do not provide sufficient mecha-
nisms for isolation [16], so there is a need for a system that
can be leveraged to layer isolation mechanisms on top of al-
ready deployed offloads. Additionally, local scheduling isn’t
sufficient to ensure isolation in chains of offloads [45] (more
on chaining below).
Variable Throughput: Another challenge is that the be-
havior of many offloads is variable and workload depen-
dent [16, 29, 37]. For example, RDMA NICs utilize RDMA
engines and caches and access main memory and any of these
components may run at less than line-rate [16, 24, 29]. As
a result, even when the network is not congested, there may
be periods where an offload and not the network line rate is
the performance bottleneck, e.g., duing a large RDMA in-
cast [23, 24, 48]. Further, this implies that static solutions to
allocate the bandwidth [53, 60] are inapplicable to the prob-
lem because they will lead to over- and under-utilization as
the throughput of the offload being shared varies.
One-Sided Offloads: Offloads can work at different layers of
the network stack and can have different usage patterns. Some
offloads do not forward part of the workload to the host CPU.
A key-value cache offload, for instance, can directly generate
the response for a request that hits. So is the case with RDMA,
where read and write operations to remote memory do
not involve the remote host’s CPU. Unfortunately, due to
the black-box nature of offloads, any isolation mechanism
must reside on the host CPU. As a result, approaches that
rely on the cooperation between the sender/client (referred
to as initiator for the rest of this paper) and receiver/server
(target) for bottleneck performance measurement will not
work for one-sided offloads. Examples of such approaches
include BBR [5] and Swift [31], which rely on the target to
reflect their measurements.
Heterogeneity and Chaining: Moreover, each type of work-
load can use a distinct chain of multiple offloads and different
chains can share offloads at a machine (node) in common [37].
As Figure 3 illustrates, multiple offloads for different func-
tions like cryptography, transport, NAT and caching can be
composed together, depending on the application’s needs.
This further exacerbates the difficulty in devising an isolation
solution because the location of the bottleneck in an offload
chain can shift when the workload changes, and two chains
may or may not share a common bottleneck from time to
time. Therefore, any solution that is designed for a fixed set
of offloads will not work.

2.4 Limitations of Existing Approaches
As black-box NIC offloads disallow instrumentation, canoni-
cal overload and congestion detection approaches that elicit
direct feedback from the overloaded location (and modulate
workload based on the feedback) are not applicable. This in-
cludes using ECN marking [1, 75] for links and credits/tokens
for microservices [6, 71, 74]. Likewise, enforcing perfor-
mance isolation at an offload e.g., using a custom scheduling
algorithm such as priority or weighted fair queueing [14, 37]
is also not possible.

Mechanisms that rely on control from a remote end or a
global scheduler to schedule all of the work for an offload
(e.g., Fastpass [50]) incur too high of latency overheads for
many applications because contacting the scheduler is re-
quired before a piece of work can be scheduled. Additionally,
these approaches require the knowledge of the offload’s cur-
rent performance; and since many offloads can have variable
throughput depending on the working state, and no exist-
ing remote scheduler can ascertain this information. Without
knowing the offload’s current performance, a remote sched-
uler can overload or underload it. Overloading causes high
queueing and packet drops which hurt the tail latency, while
underloading causes underutilization and unnecessary loss of
throughput [6].

Most prior works on NIC offload isolation either focus on a
restricted class of NICs or require custom NIC hardware that
isn’t available today. For example, FairNIC [14] is based on
SoC SmartNICs and runs packet processing software includ-
ing part of the isolation mechanism on the general-purpose
cores, while PANIC [37] proposes a novel hardware design
where the isolation support is tightly coupled with the offloads.
Unfortunately, neither class of approaches can be applied to
the ASIC-based SmartNICs already deployed in datacenters
today. Similarly, QoS (quality of service) functions like the
packet schedulers that come with some SmartNICs do not
suffice, since they cannot schedule workload for a remote of-
fload (e.g., scheduling work at a remote RDMA offload). Also,
techniques like DCB (datacenter bridging) that can prioritize
different flows [17] generally do not scale well [54, 55].

Finally, relying on end-to-end transport based congestion
control to provide multi-tenant performance isolation also can-
not work out of the box. These congestion control schemes
converge to per-flow fairness and not an entity-level fair
share of service policy defined by an operator, therefore can
still lead to priority inversions. Recent approaches to con-
gestion control that perform explicit bandwidth allocation
like XCP [26], RCP [9], and PERC [21] are promising given
the need to converge faster than AIMD algorithms. However,
all of these systems assume that the network throughput is
known and constant, so they lack the mechanism to dynami-
cally determine the throughput of an offload.
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3 OVERVIEW
Yama is a system that supports flexible sharing and isolation
of chained black-box NIC offloads across high-level entities.
Yama overcomes the challenges outlined in the previous sec-
tion.

In what follows, we first lay the design requirements for
Yama. We then present its key ideas that help meet the require-
ments. Finally, we present the key components of Yama and
show their functioning using a simple end-to-end example.

3.1 Design Requirements
In designing Yama, the following requirements must be met:
• Yama must support arbitrary black-box offloads, oblivious

to the specific type of workload or usage pattern, and
without needing custom offload or NIC implementation.
• Yama should support cross-entity service level allocation

policies that align with today’s existing resource alloca-
tion policies across entities, e.g., those based on assigning
mainstream datacenter resources such as CPU and IO.
• Yama should have low overhead on the latency and

throughput of application workload, despite operating
in a complete black-box setup.

3.2 Yama’s Approaches
Yama meets these requirements based on the following three
main ideas.
Generic queue pair model. To accommodate offloads that
work on different layers with distinct usage patterns, we make
a key observation: The interface that an offload or chain of
offloads expose to the host CPU for IO operations can be
abstracted to a generic “queue pair” model, consisting of a
work queue and an event queue. The host CPU submits work
to the offload (chain) by posting descriptors to the work queue,
and the NIC posts events such as a completion to the event
queue, which will then be polled by the CPU.

For example, an RDMA offload engine obtains work (e.g.,
a read or write operation) from the CPU from a send
and a receive queue, respectively, and notifies the CPU by
posting to a completion queue [41]. The send and receive
queues can be mapped to the work queue in our model and
the completion queue can be mapped to the event queue. Many
offloads that work on individual packets, such as NAT, com-
pression and cryptography, are compatible with DPDK [12]’s
interface, which requires the CPU to enqueue packets to a
send/submission queue for transmission or processing, and
to poll from a receive/completion queue for received and
offload-processed packets.

We leverage this insight and design Yama to be agnostic
to offload-specific interfaces and workload by performing

op scheduling (pacing) on the abstract workload in the work
queue (detailed in Section 4.2).
Weighted offload throughput sharing. We design Yama to
support weighted throughput sharing policies at a bottleneck
offload. That is, for all entities that are contending at an of-
fload whose throughput is saturated, Yama guarantees that
the ratio of per-entity throughputs adheres to the entities’ rel-
ative weights. We ensure that this also holds at the common
bottleneck of more than one chain of offloads.

This policy meets our requirements in two ways. First,
throughput is observable end-to-end, which makes it an ideal
choice of metric under the black-box assumption, especially
when offloads work on different granularities of data. Some
offloads handle packets, such as NAT, while the others deal
with multi-packet operations, such as RDMA. Second, oper-
ator can allocate throughput by simply specifying a weight
for each entity in the same way they allocate resources like
CPUs and memory today [70], and each entity can further al-
locate its share to its constituent sub-entities (e.g., a tenant can
allocate amongst its constituent applications) by specifying
per-node and per-queue pair weights.
Probing and rate pacing. Yama probes for the current max-
imum throughput of each offload chain by producing back-
ground dummy workload to saturate the chain, eschewing
the need for explicit feedbacks from the NIC or offloads, and
the cooperated measurement reflection by the target CPU .
In particular, Yama carefully backfills existing application
op issuance and/or raw packet transmissions among tenant
endpoints, and combines observations of the probe with the
throughput observed by ongoing flows to estimate the of-
fload’s maximum throughput. Yama’s lightweight rate pacing
approach then modulates the posting of workload across dif-
ferent entities such that the entities’ achieved throughputs
quickly converge to that determined by the policy and that
the sum of the throughputs is equal to the estimated total
throughput of the offload.

3.3 Performance Goals and Non-Goals
The primary goal of Yama is to provide work-conserving
weighted throughput sharing of an offload across competing
entities. Once fairness is provided, it is not Yama’s goal to
provide guarantees that latency under load is within some
factor of the unloaded latency of the offload. For example,
in RDMA, large-op flows can cause significant increases to
small op latency [73]. However, for cases where latency under
load is problematic, Yama provides several primitives like
shaping that operators can use to provide isolation mecha-
nisms for latency against adversarial workloads (Section 7).
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3.4 libYama
We incorporate the ideas described in Section 3.2 into
libYama, a generic user-space library (Figure 2). Appli-
cations link libYama, instead of offload-specific libraries
such as libibverbs to access offloads. Specifically, appli-
cations access libYama with offload-specific adaptors (e.g.
RDMA and Packet IO adaptors in Figure 2), which encap-
sulates the offload-specific workload descriptors posted by
the application into generic work-queue workload descrip-
tors, The generic work-queue workload descriptors contain
the offload-specific library hardware-access context and func-
tion that the scheduler use when scheduling the workload.
Datacenter operators can implement these adaptors in a way
that interposes the original hardware library, so that the ap-
plication can transparently link libYama at run time. This
enables applications to seamlessly run on libYama without
recompiling.

In addition to the adaptors, libYama has two main rou-
tines: throughput prober and scheduler. Both of these work
on the generic queue pairs and are application- and offload-
agnostic. The throughput prober routine in libYama runs
feedback loops to solicit the current maximum throughput
of a offload chain by saturating it with dummy workload.
The workload scheduling routine paces the workload in the
generic queue pairs towards the chain at a rate decided by
the corresponding entities’ weights (provided by the opera-
tor) and the probed throughput (Section 4.2). Finally, each
libYama instance keeps local state and consists of a ‘cluster
communicator’ to collaborate with other libYama instances
in the datacenter (see Section 4.3).

We place the probing and scheduling routines in the user
space because kernel bypassing is the most common way that
vendors provide to access the NIC and offloads for its low
overhead. We target containerized and VM-based environ-
ments where only trusted images are allowed, and tenants
or users cannot circumvent the scheduling mechanism by
providing their own runtime libraries to access the offloads.
The assumption of trusted images is common and has been
adopted by prior work too [73].
Workflow Example. We demonstrate the libYama’s basic
workflow with and RDMA transport offload as an example.
Suppose the application issues an RDMA one-sided opera-
tion (ibv_send_wr object) to the RDMA send queue im-
plemented by the adaptor ( 1○ in the figure). The adaptor
encapsulates it into a generic work queue descriptor ( 2○). The
encapsulation procedure also sets the offload-specific func-
tions and context (e.g., the ibv_qp object) for submitting
the workload descriptor to hardware. The work queue is then
paced by the scheduler according to the throughput of the
RDMA offload determined by the prober. When the scheduler
dequeues the descriptor from the work queue ( 3○), it calls the
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Figure 2: An overview of libYama.

submission routine that was set during encapsulation (in this
case ibv_post_send).

To obtain the completion notification, libYama calls the
offload-specific function (in this case ibv_poll_cq) pro-
vided by the adaptor, and places the polled object in an event
queue descriptor ( 4○), which is eventually decapsulated when
the application polls from the RDMA completion queue of
the adaptor ( 5○). How libYama works with (DPDK-based)
packet IO is largely similar, with the only difference being
that the objects polled from the hardware are packets received
from the network rather than completion notifications gener-
ated by the local NIC.

Note that libYama accepts per-queue pair weights, which
enables an entity to adjust the relative levels of service for its
constituent components on a node. libYama then schedules
the workload in each work queue at the the probed through-
put for the offload chain, discounted by the per-queue pair
weight. We detail weight management and scheduling next in
Section 4.

4 YAMA DESIGN
4.1 Policy
As mentioned above, Yama adopts the policy that allows
weighted bottleneck throughput allocation to different entities.
Yama must ensure that different entities, potentally with queue
pairs across multiple nodes, achieve the throughput according
to these weights. A complication to the policy is when entities
use offload chains, and different chains can share a common
bottleneck. In what follows, we demonstrate with an example
what the policy would mean with multiple offload chains that
might or might not share a common bottleneck, and shed light
on how Yama manages the input weights so that they can
be collectively enforced by libYama instances distributed
across the cluster.
Example. Figure 3 shows a setup of a server running a web
server and two key-value stores. The web server uses an
offload chain (in orange) consisting of the NAT, TCP, and
AES engines, while the key-value stores use a chain (in green)
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Figure 3: Example server and NIC offload chain setup (left)
and different cases of bottleneck throughput (right).

Entity Weight Target Gbps in Case
1 2 3

0 (Web Server) 0.5 10 10 12.5
1 (KVS 0) 0.3 6 9 7.5
2 (KVS 1) 0.2 4 6 5

Table 1: Example weight assignment (normalized) and ideal
throughput as per policy.

of the NAT and key-value cache engines. In this particular
case, each server instance belongs to a distinct entity, whose
weight is shown in Table 1. Weights are normalized to sum to
1 for simplicity. Note that the NAT engine is shared by both
chains and all three entities.

We discuss three different cases in which the offloads’
throughputs vary (listed on the right-hand side in Figure 3),
resulting in different bottlenecks. In Case 1, both chains are
bottlenecked by their own offloads at 10 Gbps, and not satu-
rating the shared NAT engine, so the entities should achieve
weighted throughput within their chains. So, the web server
can use all 10 Gbps of the orange chain, and the key-value
stores are allocated 6 Gbps and 4 Gbps of the green chain, re-
spectively, according to their relative weights of 3:2. In Case
2, NAT can be saturated, and the web server should idealy
share 12.5 Gbps according to its weight (0.5), but it is bottle-
necked by its own chain at 10Gbps. As a result, the key-value
stores should divide the rest of NAT’s throughput according
to their 3:2 weight ratio at 9 Gbps and 6 Gbps, respectively.
In Case 3, where both chains are bottlenecked by NAT, the
two chains equally divide the bottleneck throughput, and in
this case allocation adheres to the weight ratio of all three
entities.
Weight Management. To transform the high-level input, per-
entity weights, into metadata based on which cluster-wide
instances of libYama can collectively enforce the policy,
Yama introduces a logical control plane that manages the up-
date of weights. When an entity joins the cluster, the operator
assigns it a weight that represents operator’s desired level of
service for the entity. This can be, for example, the hourly
dollar rate that a tenants pays. The control plane then for each
offload chain normalizes these weights into per-entity weights
such that the per-entity weights of a chain sum to 1.

When an entity starts its first application on a node that
uses a specific offload chain, the control plane provides a

per-node weight that differentiates the chain’s service levels
for the entity initiating from different nodes. The per-entity
weight is normalized such that weights of entities using the
chain sum to 1. The per-node weight can be adjusted by the
entity via the control plane, and an entity’s per-node weights
also sum up to 1. Note that contacting the control plane only
for the first application is of negligible overhead, because
starting an application itself can take orders of magnitude
longer (e.g., > 600 ms to cold-start a container [56]) than the
delay in querying a control plane (< 0.5 ms [50]).

Using the per-node weight, the entity can then create and
destroy queue pairs without involving the control plane, which
is friendly to short-lived applications: The weight of a queue
pair is by default given by the product of the per-entity weight
and offload chain’s per-node weight, divided by the entity’s
number of queue pairs that use the same offload chain. The
entity can also locally customize how to allocate the weight
across these queue pairs . The scheduler eventually rate-limits
the descriptors in each work queue by its per-queue pair
weight multiplied by the offload chain’s probed throughput
(detailed next in Section 4.2).

When an entity’s last application that uses an offload chain
quits from a node, the libYama instance that executes the
feedback loop and scheduling on the node notifies the control
plane, which re-allocates the per-node weight to the entity’s
other nodes that use the same offload chain.

4.2 libYama Operation
Throughput Probing. With the per-queue pair weights in
place, Yama needs an estimated throughput of the offload
chain to calculate the rate to pace for each queue pair through-
put to pace, and the offloads’ black-box nature precludes any
design that requires explicit feedback from the offload.

To that end, a strawman approach for Yama is to itera-
tively offer increasingly high throughput using a dummy
background workload 1 through the chain, while monitor-
ing the achieved throughput until the offered throughput can-
not be achieved. The maximum throughput of the chain is
then given by the sum of throughput of both the dummy and
normal application workload. However, we observe that the
dummy workload in this scheme embezzles the throughput
of applications, violating the low overhead requirement.

To mitigate the impact of dummy workload, we devise a
technique called backfilling. The feedback loop is described
in Algorithm 1. Instead of blindly generating a dummy work-
load to saturate the chain, libYama only produces in each

1We assume that the method for generating dummy workload to a specific
offload chain is provided by the operator who implements the corresponding
adaptor and understands the performance characteristics of the deployed
offloads.
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iteration enough dummy workload to fill the throughput dif-
ference between the chain’s estimated current maximum and
the application throughput (Line 8-10). To adapt to increases
in the bottleneck throughput, Yama adopts controlled oversub-
scription. The feedback loop provides a throughput estimation
greater than the achieved value by a factor 𝛽 (Line 6-7), so
that libYama rate-paces application workload and generates
dummy workload at higher throughput. In the next iteration,
estimated maximum throughput is updated according to the
actually achieved throughput by the dummy and application
workloads combined (Line 4-6). Note that the probed through-
put can be limited by applications that do not have sufficient
workload to saturate the previous 𝜆. Therefore the feedback
loop caps the dummy workload to a fraction of the application
workload to avoid waste of resources and does not update the
throughput estimation (Line 6-7) in such cases.

However, two challenges arise when multiple initiators
need to access the same offload chain. First, the throughput
of all applications using the chain must be available to the
feedback loop. Second, the updated throughput estimation
(produced at Line 6) must be made available to all the initia-
tors for libYama to schedule workload for this chain. To
tackle these challenges, we design a coordinating overlay net-
work among the libYama instances, driven by the “cluster
communicator” module (Figure 2) in libYama to exchange
such informaion. We discuss this in detail in Section 4.3.
Scheduling. On each node there is a scheduler routine that
is responsible for multiplexing the workload from all queue
pairs towards an offload chain. The scheduler calculates the
per-queue pair rate by multiplying the per-queue pair weight
and the probed maximum throughput of the chain. For each
queue pair, the scheduler maintains a token bucket and fills
the bucket at the per-queue pair rate, up to a limit, which
represents the maximum burst allowed for a queue pair. For
queue pairs that do not have sufficient workload and the token
bucket is full, the scheduler allocates the surplus tokens to
other queue pairs towards the same offload chain for work
conservation.
Execution. To execute the scheduling and probing routines,
as well as the state exchanges between libYama instances,
one approach is to allocate dedicated CPU cores on each node.
But this is undesirable as it reduces the resources available to
production applications. Yama instead uses the idea of cycle
scavenging, where applications use their own CPU cycles
to execute libYama’s routines: When the application polls
I/O queues of the libYama adaptor , it executes a routine
that not only polls from the hardware but also drives the
scheduling routine for all other queue pairs towards the same
, the feedback loop for some chains, and the communication
with other libYama instances (detailed in Section 4.3).

Algorithm 1: Yama’s Feedback Loop

1 while true do
/* Update timestamps since last iter */

2 𝑇last ← 𝑇now

3 𝑇now ← 𝑔𝑒𝑡𝑇𝑖𝑚𝑒 ()
/* Count the amount of app and dummy work

completed since last iteration */

4 𝐵
𝑝𝑜𝑙𝑙

𝐴
← 𝑔𝑒𝑡𝐴𝑝𝑝𝑊𝑜𝑟𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑆𝑖𝑛𝑐𝑒 (𝑇last)

5 𝐵
𝑝𝑜𝑙𝑙

𝐷
← 𝑝𝑜𝑙𝑙𝐷𝑢𝑚𝑚𝑦𝑊𝑜𝑟𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑆𝑖𝑛𝑐𝑒 (𝑇last)

/* Calculate estimated maximum throughput

with a simple sliding window */

6 𝜆 ← 𝑠𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑚𝑜𝑜𝑡ℎ(𝐵𝑝𝑜𝑙𝑙

𝐷
+ 𝐵𝑝𝑜𝑙𝑙

𝐴
,𝑇now)

/* Oversubscription by a factor of 𝛽 */

7 𝜆 ← (1 + 𝛽)𝜆
/* Calculate the amount of dummy work to

backfill */

8 𝐵
𝑝𝑜𝑠𝑡

𝐴
← 𝑔𝑒𝑡𝐴𝑝𝑝𝑊𝑜𝑟𝑘𝑃𝑜𝑠𝑡𝑒𝑑𝑆𝑖𝑛𝑐𝑒 (𝑇last)

9 𝐵
𝑝𝑜𝑠𝑡

𝐷
←𝑚𝑖𝑛(𝜆(𝑇now −𝑇last) − 𝐵𝑝𝑜𝑠𝑡

𝐴
, 0)

10 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑛𝑑𝑃𝑜𝑠𝑡𝐷𝑢𝑚𝑚𝑦𝑊𝑜𝑟𝑘 (𝐵𝑝𝑜𝑠𝑡

𝐷
)

11 end

This is a viable approach because, on the one hand, we
observe that applications generally spend a large amount of
cycles spin waiting for events such as received packets or
completion notifications in kernel-bypass networking. These
cycles are wasted if Yama does not utilize them. On the other
hand, cycle scavenging does not incur excessive latency to
individual pieces of workload because libYama’s routines
do not involve complex computation and can be executed by
different CPU cores that belong to different applications. We
evaluate the overhead that libYama induces in Section 6.

4.3 Cluster-Wide Collaboration
4.3.1 Coordination for Feedback Loop.
For each offload chain, one single instance of the feedback
loop is sufficient to provide the throughput estimation, and
running multiple feedback loops for the same offload chain
incurs extra compute and communication costs. This involves,
for example, each initiating libYama instance of this chain
multicasting its application throughput to more than one feed-
back loops, and the feedback loops reconciling on each one’s
dummy work throughput to post, all consuming the scav-
enged CPU cycles that Yama should not overuse in order to
minimize the impact on application performance.

That is, Yama must: (1) minimize the compute and commu-
nication costs, and (2) keep the feedback loop running while
applications start and stop.
Coordinating Overlay. We design an overlay network across
libYama instances to meet these requirements.
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Figure 4: Coordinating overlay.

Figure 4 demonstrates the RDMA-based exchanges among
libYama instances. The libYama instance running the
feedback loop (the “leader”) for an offload chain exposes a
memory region that contains the estimated throughput of the
chain as well as a ring buffer for each other instance that
uses this chain. These other instances issue RDMA read
operations to fetch the estimation and write operations to
its corresponding ring buffer so as to notify the feedback loop
of the amount of application workload accomplished. We
set the overlay network traffic to a higher PFC (priority flow
control) priority than the normal application traffic to make
sure updates are delivered promptly.

This approach is scalable in terms of both memory and
latency. The per-instance ring buffer is small (a few dozens of
bytes), so a few 2MB hugepages are enough to support 10K+
remote instances. Moreover, each libYama registers a large
memory region for RDMA when the it is loaded. This memory
region is managed by the control plane, which allocates the
ring buffer from that region when the entity requests to start
an application. Therefore, the start of applications does not
incur extra latency waiting for the leader to allocate the ring
buffer just in time, which is a desired property for short-living
applications.
Handover of Feedback Loop Execution. Since the feed-
back loop is driven by the CPU cycles of an application, it
can stop when the driving application stops busy polling to
execute other routines, or when the application quits either
normally or accidentally. If this is not properly handled, the
estimated throughput of a chain will stop being updated, and
the other libYama instances will pace their workload based
on a stale estimation, which can lead to over- or underloading.

To avoid this, we introduce a mechanism that transfers
the feedback loop of a chain to another libYama instance
whose application is active. Specifically, we accompany the
throughput estimation with a timestamp field. Each time the
feedback loop outputs an estimation, it also records the cur-
rent timestamp. When the other libYama instances read this
memory region, they compare the timestamp with the last
read operation. The first libYama instance to find the times-
tamp being stale for over some threshold period will start
an RDMA-based leader election [52] among the libYama
instances whose applications use the same offload chain.

However, the leader election is also driven by CPU cycles
scavenged from the application; it can happen that most par-
ticipants are currently not active and so their voting routines
cannot be executed for some period of time, so that a new
leader might not be elected soon.

To avoid overly stale throughput estimation, the participant
that proposes to be the new leader will start executing the
feedback loop right away instead of waiting for votes. Those
who receive the vote request will start reading the estimate
from the candidate. This in effect ensures that the execution
of the feedback loop is handed over quickly regardless of how
long it takes to reach consensus.
4.3.2 Monitoring One- and Two-Sided Offloads.
For Yama, the significant difference between one- and two-
sided offloads (or chains) is where to monitor their achieved
performance for the feedback loop to calculate the amount of
dummy workload to generate. As previously mentioned, one-
sided offloads like RDMA and KV Cache do not always notify
the CPU of individual pieces of workload. Therefore, their
throughput has to be monitored on the operation initiators.
In contrast, two-sided offloads, such as most network-layer
ones (e.g., NAT and IP checksum) should be monitored at the
target (receiver).

Yama can accommodate both cases. As shown in green in
Figure 4, for applications that use one-sided offloads or chains,
the collection of throughput statistics happens in the event
queue paired with the work queue that issues the operations
when the application polls for completion or acknowledgment.
As shown in orange in Figure 4, for two-sided offloads, the ap-
plications on both sides are required to use libYama so that
the achieved throughput of the offload chain can be gathered
on both ends when the applications poll to receive packets,
operations, or requests. In both cases the achieved throughput
is delivered to the feedback loop via the coordinating overlay
above.

5 IMPLEMENTATION
We implemented a prototype of Yama, which mainly focuses
on the probing and scheduling functions. For applications that
use the same offload chain, their libYama loads the per-node
shared memory that contains the probing and scheduling state
with respect to the chain. The prototype implements a light-
weight coordination overlay. The leader libYama instance
that executes the probing and scheduling routines is elected
within a preselected node using a spin lock that applications
contend for when invoking the adaptor’s polling routine. Also,
for two-sided offload chains, the receiver-side libYama con-
veys the achieved throughput to the leader in the form of tiny
ACK packets. We omit the control plane and use statically
assigned entity weights for evaluation, because as mentioned
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in Section 4.1, the interaction between libYama instances
and the control plane is not performance-critical.

For evaluation purposes, we have the evaluation software
NIC that runs offloads (introduced in the next section), di-
rectly interfacing libYama, but we implement an RDMA
adaptor to demonstrate Yama’s ability to work with different
types of offloads.

The RDMA adaptor is realized by interposing the RDMA
user-space library (libibverbs) so that existing RDMA
applications can work over Yama without extensive adapta-
tion. Most of the library functions are retained as-is, while
the data-path ones like ibv_post_send are altered to redi-
rect application calls to libYama. When libYama sched-
ule the RDMA operation, it finds the function pointer in the
work queue’s encapsulating descriptor, which in this case
is mlx5_post_send (we use Mellanox CX5 NICs). The
libibverbswe base on is in package rdma-core, which
is part of Mellanox OFED (Mellanox’s official driver and soft-
ware collection) for Linux version 5.0-2.1.8.0.
libYama and the RDMA adaptor add up to approximately

4,900 lines of C code.

6 EVALUATION
In this section, we seek to answer these questions:
(1) Can Yama achieve weighted fairness of throughput for a

variety of offloads?
(2) Can Yama achieve weighted throughput fairness when

offload chains share a common bottleneck?
(3) How quickly does Yama converge to changes?
(4) How much overhead does Yama incur on the application

workload?

6.1 Methodology
Offloads. We evaluate Yama with four offloads: NAT, RDMA,
key-value cache (KV Cache), and AES engine. This selection
broadly covers the network (NAT), transport (RDMA) and
application (KV Cache, AES) layers. It represents different
usage patterns: NAT accepts raw packets, RDMA takes verbs
like read and write, KV Cache works on RPC, and AES
can handle byte chunks.

A major challenge in evaluating Yama lies in flexibly chain-
ing them together and creating different bottleneck scenar-
ios like the example cases shown in Section 4.1 to evaluate
Yama’s efficacy. While current NIC designs support chain-
ing of offloads – to the best of our knowledge, there is no
available testbed NIC design to artificially simulate different
bottleneck scenarios. Our method, therefore, is to develop
our own software NIC and software implementations of the
offloads (except for RDMA offload which is supported by
our testbed NIC). This software NIC implementation allows

arbitrary chaining of different offloads and we can syntheti-
cally rate-limit each offload to emulate different bottlenecks.
The software NIC performs raw packet IO via the hardware
NIC using DPDK and can steer packets from/to different of-
fload engines according to pre-configured rules. The offload
engines can interface with applications with descriptor rings
in shared memory.

We argue that such software implementaion of offloads
shared by multiple entities is reasonable in datacenters. There
exists high-level offload logic such as data analytics [36] that
can only be executed by general-purpose cores hence must be
implementd in software. Onloading such logic from NIC to
host CPU has also been proposed for better performance [38].
Since the computation can be common in all kinds of appli-
cations, it can be desirable for datacenters to provide such
computation as a shared service, so that tenants can avoid
duplicate efforts.
Topology. We focus on the incast topology, where many
nodes (clients) issue packets or (transport/RPC) operations
to the NIC of one node (server). An incast is more prone to
reach the bottleneck throughput as multiple client-side CPUs
can generate more workload than that can be generated on a
single node of the server. However, it should be noted that the
design of Yama is orthogonal to topology and that there is no
fundamental limitation on applying Yama to other topologies
(such as an outcast) in case the client-side offloads become
bottlenecks.
Testbed. All experiments are carried out on CloudLab [10].
Unless otherwise specified, each node has an AMD EPYC
7452 CPU with 64 hardware threads at 2.35GHz, 128GB of
main memory, and a 100Gbps Mellanox CX5 RoCE NIC. A
Dell Z9264F-ON non-blocking 100Gbps switch connects the
partition of the cluster we use.

6.2 Fair-Share of Heterogeneous Offloads
We answer the first question by benchmarking Yama with
three offloads individually: NAT, RDMA, and KV Cache.
These offloads work on different network layers and repre-
sent different usage patterns. We use our software NIC-based
implementation of NAT and KV Cache and the hardware
RDMA engine on the testbed’s NIC. To generate application
workload, we develop libYama-native workload generators
for NAT and KV Cache, and an RDMA-native workload
generator with libYama adaptor.

The NAT generator generates IP packets with sizes subject
to the bimodal distribution of data-center packets [4] that
peaks at 40B and 1500B. The KV Cache workload generator
produces UDP-based RPC requests of 32B keys and 64B
values with 95% GET and 5% PUT, subject to a uniform
distribution of 10,000 distinct keys. The RDMA workload
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Figure 5: Per-entity fraction of fair throughput with various
offloads.

generator issues a mixture of 50% read and 50% write
operations of 64B.

Since the RDMA’s hardware offload has a much higher
maximum throughput compared to the software NAT and KV
Cache, for RDMA, we use an incast from 12 nodes (each run-
ning a feedback loop) with 60 workload generator instances;
and for NAT and KV Cache, we use an incast from 20 work-
load generator instances. Each workload generator creates a
distinct libYama queue pair (as well as the corresponding
underlying hardware queues) and is driven by a separate CPU
core.

We divide the workload generator instances into three en-
tities, where Entity 1, 2, and 3 have 60%, 20%, and 20%
of the instances, but are assigned weights of 0.4, 0.2, and
0.4, respectively. Such assignment represents scenarios where
low-weight entities (like Entity 1) try to gain more access to
the offloads by ramping up more queues than higher-weight
entities.

Figure 5 contrasts the achieved throughput of each entity
with Yama and without it (called “Vanilla” in the figure). The
vertical axis shows the ratio of the achieved throughput to the
desired throughput as per policy, and the actual throughput
is labeled above each bar. For example, the RDMA engine
in this case, can process around 46Gbps. According to the
weight assignment, the Entity 1 should obtain only 18.4Gbps,
while it actually achieves 27.4Gbps without Yama, resulting
in 1.49x times more usage than the fair share. Ideally, Yama
should make all bars close to 1, which is indeed true according
to the figure, and we conclude that Yama effectively achieves
weighted fairness of throughput for different offloads.

Another point to note is that applying Yama does not lower
the total throughput across all entities by more than 6%,
and the total throughput actually improves for RDMA and
NAT, which can be due to the different access patterns with
Yama scheduling. This means that the dummy workload pro-
duced by the feedback loop incurs negligible overhead to the
throughput of regular applications.

6.3 Fair-Share Under Offload Chaining
To answer the second question, we evaluate Yama with two
offload chains on the server’s software NIC configured as
shown in Figure 6, where the orange chain (Chain 1) uses the
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Figure 6: Offload chain configuration and emulated bottle-
necks.
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Figure 7: Per-entity throughput under a common bottleneck
shared between offload chains.

NAT and AES offloads and ends up in a packet sink that re-
ceives packets and maintains statistics. Since the orange chain
is two-sided (Section 4.3), the packet sink uses libYama on
its receive routine to communicate the achieved throughput
back to the libYama instance running this chain’s feedback
loop. The green chain (Chain 2) uses the NAT and KV Cache
offloads and is shared by two entities, each running a key-
value store instance on the server CPU. In conclusion, the
three entities are the packet sink and the two key-value stores.
Each entity runs an instance of the corresponding workload
generator from remote with libYama.

The table on the right lists the combinations of rate limits
that induce different bottlenecks, similar to the example in
Section 4.1. We also assign the same weights to the three
entities.

The results are shown in Figure 7. The red dotted line indi-
cates the fair throughput for an entity given the total through-
put achieved by Yama in each case. The figure suggests that
Yama is capable of enforcing the weighted throughput pol-
icy in different chaining scenarios, even when the chains are
independently bottlenecked and when they share a common
bottleneck. In particular, the Yama’s total throughput is no
lower than the vanilla in all cases.

6.4 Convergence to Equilibrium
We answer the third question by studying the responsiveness
of Yama to converge to the fair throughput in the face of
applications starting and stopping workloads to the queue
pairs. We use the same KV Cache experiment configuration as
mentioned in Section 6.2. We model the start of the workload
of each client as a Poisson process, and the time the client
generates the workload for, is drawn from an exponential
distribution. We regard each client as a separate entity and
assign equal weights to each client to make the results simple
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Figure 8: Throughput changes with entity joining and leaving.
Each color corresponds to a separate entity.

to analyze: the achieved throughput of all active clients should
be equal during the experiment.

Figure 8 shows the measured throughput of all clients ag-
gregated every 1ms. The figure demonstrates that Yama can
converge to the fair throughput share for all active entities -
as entities join and leave, the throughput always converges to
an equal value. The figure also zooms in to show two cases
of entities joining (at around 2s) and an entity leaving (at
around 13.5s), where throughput is aggregated per 20𝜇s. For
both cases, Yama converges to the new fair throughput share
within 100𝜇s, which is only single-digit RTTs (RTT evalu-
ated below) and much faster than RoGUE [34], a congestion
control scheme that does not rely on explicit feedback for low-
latency RDMA operations. Hence, we claim that the Yama
is responsive and can converge to fairness quickly. This is
because Yama’s pacing is directly based on a known through-
put. Also Yama does not cause loss of throughput because
the scheduler is work-conserving as weights are updated as
entities join and leave.

6.5 Overheads
To study Yama’s overheads on application workloads, we
carry out an experiment where we use the workload generators
as applications to produce workload at different throughputs
and measure the end-to-end latency from when the application
posts the workload to when the application is notified of the
completion of the workload. For KV Cache, this is the time
difference between posting the RPC and polling the reply
corresponding reply. The request workload is generated as
mentioned in Section 6.2 For NAT, since it is a network-layer
offload that does not generate any reply packet, we measure
the round-trip time of each packet by recording the send
timestamp in the packet and have the receiver application on
the server echo all packets back.

We run this experiment with and without Yama. The dif-
ference in the measured latencies gives the net overhead of
Yama on each request or packet. Figure 9 shows the measured
median and tail latencies of the two applications as the offered
throughput is increased from 2 Gbps steadily until the offered

2 3 4 5 6 7
Offered throughput (Gbps)

0
20
40
60
80

100

La
te

nc
y 

(μ
s)

KVS

2 4 6 8 10 12 14 160
10
20
30
40
50
60 NAT

Vanilla,50% Vanilla,99% Yama,50% Yama,99%

Figure 9: NAT and KVS op latency at various offered loads.

throughput can no longer be achieved. Figure 9 demonstrates
that Yama adds only a few (mostly <3) 𝜇s of overhead in the
tail latency. The figure also shows that for small throughputs,
the overhead can be as low as less than a 𝜇s. We claim that
this is a negligible overhead for the performance isolation
guaranteed by Yama.

7 DISCUSSION
Broad applicability of Yama’s approach. Yama’s black-
box approach for entity-level performance isolation can be
extended beyond NIC and offloads to various types of middle-
boxes. On the one hand, offloading on programmable switches
has become increasingly popular [20, 32, 72], and complex
offload logic might not guarantee line-rate processing [72] On
the other hand, high-programmability hardware such as the
DPU (data processing unit) is being deployed to accelerate
domain-specific high-level tasks. Both scenarios warrant a
solution for performance isolation, and Yama can be easily
applied to either. Specifically, Yama allows offload chains that
cross network links to include switch offloads; and by treating
the DPU offload as yet another black box and developing an
appropriate adaptor, Yama can work seamlessly.

In addition, offloads that run on the same hardware can
share some underlying resources. For example, NIC offloads
can contend for the SRAM-backed cache [24, 38] and PCIe
bandwidth [47]. In such cases, Yama’s black-box approach
can transparently provide “coarse” entity-level performance
isolation in terms of average throughput by modeling the
shared resource as a bottleneck “offload” shared by multiple
chains. However, without knowing how these resources are
multiplexed, and without local isolation mechanism such as
weighted round-robin scheduling, it is hard to provide ‘fine-
grained’ isolation over such shared hardware resources. We
leave the exploration on applying Yama to shared hardware
resources to future work.
Opportunities for protection against adversarial work-
loads. As previously mentioned, Yama does not aim to en-
sure that latency under load is within some factor of un-
loaded latency. However, the generic adaptor-based design
of libYama enables solutions to at least a subset of these
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problems. For example, Justitia [73] addresses a problem
in RDMA where large ops can cause head-of-line blocking
for small ops from other flows, by opportunistically splitting
large ops into smaller ones. This approach can be achieved in
Yama by incorporating the shaping logic in the adaptor when
converting RDMA ops into generic work queue descriptors,
and controlling the granularity of splitting by measuring small
op latency with dummy workload generation.

Another problem is offloaded functions with super-linear
complexities, such as sorting, where large input can cause
disproportionate throughput degradation. In such cases the
operator can implement the adaptor in a way that penalizes
large ops, for example, by reporting to libYama an op size
adjusted for algorithm complexity.
Priority-based policies. In this paper, we have adopted the
policy of weighted throughput allocation. However, some
operators might also desire priority-based policies where high-
priority entities must always be processed by the offload first.

This is a non-trivial problem without hardware support.
In Yama, since the scheduling of workload does not happen
locally at the offload, the nodes that schedule the workload
have to perform all-to-all communication on virtually every
op or RPC constituting a workload. This is needed to make
sure there is no higher-priority workload on another node that
needs to be scheduled. This can incur unacceptable overhead.

Nevertheless, such overhead may be mitigated by relaxing
the priorities. A strawman might be able to hide the latency
of all-to-all exchanges by, for example, scheduling local high-
priority workload without waiting for communication. We
leave a detailed exploration to future work.
Limitation of probing and backfilling. We find that, in prac-
tice, the probing feedback loop can be susceptible to jitter
in collecting the completed workload statistics (Line 4 in
Algorithm 1). Such jitter can be due to batch processing in
the libYama execution routine, which must poll each queue
pair to schedule pending workload and poll the hardware
for events such as op completion and received packets, all
while collecting completion statistics from other libYama
instances and running the feedback loop; thus, the statistics
might not be accurate by the time the feedback loop runs. As
a result, instead of constantly updating the throughput esti-
mation, the feedback loop must gather workload statistics for
an extended period of time (which we empirically set to 1.25
times RTT) before the next update. As such, Yama can fall
short in tracking sub-RTT changes in the offload throughput.

Also, backfilling can be limited in that, it requires the op-
erator to know a representative distribution for the dummy
workload, which involves human efforts to collect telemetry
and perform analysis, or to automate this process. In particu-
lar, an open challenge is developing backfilling to represent
cases where an offload’s performance is related to the entities’
private state in the offload.

8 RELATED WORK
Isolation in traditional clouds. A few notable systems pro-
vide performance isolation in traditional cloud networks. Sea-
wall [60] features entity-level link bandwidth sharing in tra-
ditional datacenters. FairCloud [53] investigates the relation-
ship among different properties of isolation policies in clouds,
such as min-guarantee and network proportionality. Dom-
inant resource fairness [13] accommodates different types
of resources such as CPU, memory, and bandwidth in the
sharing of datacenters. Google’s BwE enforces policies hi-
erarchically through rate-limits [30]. Nimble uses a control
loop to install in-network rate limits on switches to provide
per-entity fairness [68]. Since Yama focuses on offload chains,
it is complementary to all of these projects. Also, since all
these systems assume that the line rate of the shared resource
is known, Yama addresses a key problem that arises in inte-
grating offloads into other network-wide isolation systems by
providing a low overhead mechanism for probing the current
throughput of offloads.
SmartNIC primitives for isolation. There has been recent
works on providing performance isolation for offloads that
share the same SmartNIC. For example, PANIC [37] uses a
hybrid push/pull approach that schedules packets for each
offload in a chain while trying to avoid detours when possible,
and SuperNIC [58] schedules packets across different chains
of offloads to provide isolation. Yama is complementary to
both of these systems. Even with systems that improve per-
NIC local scheduling, Yama is still needed because local
policy enforcement doesn’t lead to global policy enforcement
for chains [45, 68], and Yama moves packet buffering from
in-network devices into the edge, which is desirable [49].
RDMA performance isolation for mixed op sizes. Justi-
tia [73] uses an approach that also breaks RDMA requests
into chunks to mitigate the previously mentioned head-of-line
blocking problem. But this work mostly focuses on a rudi-
mentary two-node setting without considering the isolation
problem at a cluster scale. Further, Justitia makes the design
choice to sacrifice some total throughput to preserve latency,
and the AIMD algorithm used in Justitia can be slow to con-
verge. In contrast, Yama provides both high throughput and
predictably low latency overhead with fast convergence times.

9 CONCLUSIONS
We propose Yama, the first solution to provide per-entity iso-
lation in the sharing of black-box NIC offloads. Unlike prior
works that require customization of either the NIC or the of-
fload, Yama enables this for commodity off-the-shelf NICs
and proprietary offloads by providing a generic framework
that abstracts the operations of most offloads. To ensure fair
throughput sharing, Yama uses a novel performance prob-
ing approach leveraging dummy workloads, and paces the
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application throughput according to a policy that can pro-
vide weighted fairness of throughput for a variety of offloads
as well as chains of different offloads. We demonstrate that
Yama can provide per-entity fairness as per operator-defined
weights for a variety of scenarios. Yama can converge to the
fair throughput in a short response time and the overhead of
Yama is only a few 𝜇s, which we claim to be a reasonable
overhead.
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