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The wide adoption of the emerging SmartNIC technology creates new opportunities to offload application-level
computation into the networking layer, which frees the burden of host CPUs, leading to performance improve-
ment. Shuffle, the all-to-all data exchange process, is a critical building block for network communication in
distributed data-intensive applications and can potentially benefit from SmartNICs.

In this paper, we develop SmartShuffle, which accelerates the data-intensive application’s shuffle process
by offloading various computation tasks into the SmartNIC devices. SmartShuffle supports offloading both
low-level network functions, including data partitioning and network transport, and high-level computation
tasks, including filtering, aggregation, and sorting. SmartShuffle adopts a coordinated offload architecture to
make sender-side and receiver-side SmartNICs jointly contribute to the benefits of shuffle computation offload.
SmartShuffle carefully manages the tight and time-varying computation and memory constraints on the
device. We propose a liquid offloading approach, which dynamically migrates computations between the host
CPU and the SmartNIC at runtime such that resources in both devices are fully utilized.

We prototype SmartShuffle on the Stingray SoC SmartNICs and plug it into Spark. Our evaluation shows that
SmartShuffle improves host CPU efficiency and I/O efficiency with lower job completion time. SmartShuffle
outperforms Spark, and Spark RDMA by up to 40% on TPC-H.
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1 INTRODUCTION
Modern data-intensive applications run on distributed machines and induce significant network
communication. Various hardware technologies (e.g., programmable switches) have been developed
to add intelligence to the network to reduce communication overhead and accelerate performance.
SmartNIC, in particular, is an emerging technology that extends a conventional network interface
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card (NIC) with extra computation and memory. SmartNIC adoption has grown in recent times,
with widespread deployments in cloud data centers (e.g., AWS Nitro [2] and Azure [20]).

Existing SmartNIC acceleration solutions focus on offloading specific packet processing functions,
such as traffic scheduling, security [49, 52], and network virtualization [2, 2, 20, 22]. With a focus
on such simplistic acceleration today, SmartNIC deployments leave significant NIC computational
resources unused. In this paper, we address how best to leverage these resources toward systemati-
cally accelerating data-intensive workloads. We discuss key arguments for when/why SmartNIC-
acceleration of data-intensive applications matters and develop building blocks for enabling it using
the example of SmartNIC-accelerated shuffle operators.

The shuffle (a.k.a. Exchange) operator is a common building block in data analytics applications
(e.g., MapReduce [19], Spark [56], and analytical databases [13, 31]) and is used to perform in-
termediate data exchange. Shuffle has been identified as a key performance bottleneck in these
applications [12, 13, 17, 42, 45, 48, 57], and has been optimized through various techniques in both
software [9, 17, 48, 57] and custom hardware [1, 31, 50, 51].

We argue that an operator like shuffle is a good candidate for acceleration because the SmartNIC
is computationally capable of conducting shuffle-related tasks and has a system-wide view of
the network behavior that the host applications may lack. Accelerating the shuffle could lead
to significant savings in host CPU. Further, because shuffle forms the intermediate stages of
data-intensive applications, the CPUs saved from shuffle acceleration could be leveraged toward
completing such applications faster by scheduling downstream application stages for execution
earlier than otherwise possible; the saved CPUs can also be used to launch additional data-intensive
workloads earlier than otherwise.

A key challenge in offloading shuffle to SmartNICs is the limited hardware resources of the
NICs. Compared to a host CPU, SmartNIC processors are typically less powerful with a smaller
memory capacity; as such the shuffle and the associated computation tasks may not entirely fit in
the SmartNIC. Furthermore, with network processing functions offloaded to the NIC, and with the
time-varying demands of both network processing and data-intensive workloads, shuffle offload
needs to be adaptive so as to be effective.

Our SmartNIC-optimized shuffle framework, SmartShuffle, opportunistically and fully utilizes
on-NIC hardware resources by carefully coordinating the computation across the host CPU and
SmartNICs so that both computational substrates are fully utilized. SmartShuffle is exposed to a
big-data analytics system via a unified API and can dynamically determine whether the associated
computation should be executed on the SmartNICs, the host, or a hybrid of the two.
SmartShuffle supports not only the basic network communication functions in data-intensive

applications, but also the associated tightly coupled common operators, including data partitioning,
filtering, aggregation, and sorting functions. By carefully offloading these functions to the SmartNIC,
SmartShuffle reduces the burden of host CPU computation and minimizes network traffic volume.

In a typical shuffle, data is exchanged from "map" tasks to "reduce" tasks. To maximize the Smart-
NIC’s resource utilization, SmartShuffle leverages the SmartNIC computation from both the mapper
and reducer nodes. SmartShuffle adopts a coordinated offload architecture where both the map-side
and the reduce-side SmartNICs of a shuffle jointly contribute to the shuffle offload and relevant
computation. The map-side SmartNIC offload merges many small I/O requests, reduces network
traffic, and frees up host CPUs by applying application functions such as filtering, aggregation, and
sorting where available in the input data analytics query (e.g., a SQL query over large datasets).
The reduce-side SmartNIC offload further reduces computation load or data traffic to the host CPU
by applying similar functions over incoming data from different nodes.
To manage limited SmartNIC computation and memory capability, SmartShuffle uses a new

technique called liquid offloading to avoid the SmartNIC becoming a new performance bottleneck
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Fig. 1. Running 320GB TeraSort using Spark. Measure the CPU and network usage of an executor.

when too much computation is offloaded to it. Liquid offloading has two components. First, to
ensure that offloaded tasks fit the memory capacity on both map-side and reduce-side SmartNICs,
we perform partial offloading for certain stateful operators (e.g., aggregation and sorting) and
stream computation results to the next hop to release the on-NIC memory resources. A key research
challenge is to identify appropriate streaming strategies for different types of operators to achieve
the best performance. Second, to maximize the amount of work offloaded to the SmartNIC while
avoiding the typically slow SmartNIC cores becoming a bottleneck, we detect SmartNIC load and
dynamically move some of the shuffle computation from the SmartNIC to the host cores. We design
a novel rate-based dynamic migration policy that adapts to the runtime computation behavior of
batch analysis jobs.

We have developed a prototype of SmartShuffle in Spark, a popular big-data analytics framework.
We evaluate the performance of SmartShuffle on synthetic workloads as well as representative
TPC-H queries. Our evaluation shows that SmartShuffle can decrease Spark job completion time
by 10%–30% and reduce CPU usage by 30%–70% compared to the original Spark. The evaluation
on the TPC-H [8] workload shows that SmartShuffle outperforms Spark, Spark RDMA [1] (i.e., an
RDMA-based shuffle optimization in Spark), by up to 40%.
Even though we focus on shuffle, we argue that the ideas underlying SmartShuffle are general

enough to help accelerate other types of data-intensive applications [5, 15, 46]. For example, a
distributed ML training framework [5] can utilize SmartShuffle’s framework to accelerate the
collective communication and gradient averaging process on SmartNIC cores. Likewise, a dis-
tributed database’s query planner [46] can co-design closely with SmartShuffle to offload network
communications as well as a portion of query execution down to the NIC. Our work opens up
exciting possibilities for such acceleration.

2 BACKGROUND ANDMOTIVATION
Shuffle is a key building block in distributed data analytics applications including big data platforms
like MapReduce [19] and Spark [56] and distributed online analytical processing (OLAP) databases.
In this section, we analyze the performance overhead of shuffle using Spark as the target system
(Section 2.1); the conclusions can be generalized to other distributed systems as well. We then
discuss the opportunities (Section 2.2) and challenges (Section 2.3) of using SmartNIC offload to
improve shuffle performance.

2.1 Shuffle CPU Cost Analysis in Spark
Shuffle is the inter-node communication mechanism in Spark. In Spark’s shuffle process, mappers
first create data partitions and re-arrange the data tuples within each partition using appropriate
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Operation Type TeraSort TeraCount PageRank
RDD Computation 11.4% 50.4% 58.1%

Shuffle Map Shuffle Pre-processing 27.8% 39.4% 20.1%
Stage Byte Stream Generation 11.3% 1.0% 15.0%

Misc 2.1% 5.3% 3.3%
Total 51.6% 96.2% 97.1%

Output Stage Total 48.3% 3.8% 2.8%

Table 1. The percentage of time spent on RDD computations, shuffle pre-processing, and byte
stream generation in different computation stages. The shuffle pre-processing phase includes both

partitioning and the shuffle data-reorganization process.

data-reorganization operators, i.e. aggregation, and sorting, to facilitate parallel computation in the
reduce stage [13, 55, 58]. The mappers then perform byte stream operations, i.e., data serialization
and compression, dump the intermediate data to disk, and notify the Spark driver of the data
location. The reducers fetch the data over the network and execute user-defined reduce functions.
While other systems may not explicitly include data reorganization operators in the shuffle

process (as the data-reorganization functions can be implemented as the aggregation/sort operator
in the query plan [46, 58]), we follow the Spark model of including them as part of the shuffle.
However, regardless of the exact definition of shuffle, the analyses and conclusions in this section
will still apply.

Figure 1 shows the measured network and CPU usage when running a 320 GB TeraSort workload
in a 4-node Spark cluster; the detailed experimental setup will be explained in Section 6. The result
shows that the bottleneck in the shuffle process is CPU computation rather than network operations,
which is consistent with the conclusions of previous studies [1, 40, 51, 54]. In this shuffle-intensive
workload, CPU utilization is close to 100%, while network utilization is generally lower than 50%,
indicating that the CPU bottleneck results in underutilization of the network bandwidth.
We identify two key reasons for high CPU computation overhead in these shuffle-intensive

workloads:
Shuffle Pre-processing Cost.We have broken down each function of the shuffle process at the
mapper side for three Spark workloads [24]: TeraSort, TeraCount, and PageRank. Based on the
blocked time analysis [40], Table 1 shows the relative time spent during the shuffle process. The pre-
processing overhead in shuffle is non-trivial (> 20%), especially for TeraSort (28%) and TeraCount
(40%), since these two workloads incur pre-sorting and pre-aggregation overhead when preparing
the shuffle data. In PageRank, the only pre-processing is hash partitioning, which still incurs more
than 20% overhead. The byte stream generation overhead is correspondingly high in TeraSort and
PageRank (> 10%). As for TeraCount, since the mapper output has already been pre-aggregated, it
generates less intermediate shuffle data and has minimal serialization/compression overhead.
Overhead of Small I/O.During shuffle, each reducer issues a large number of remote read requests
to collect partitions from the designated mappers. This not only incurs small network I/Os for
remote fetching but may also result in a massive number of small random disk read I/Os on the
mapper nodes if the shuffle data is materialized on the disk [40, 48, 57].
The number of I/Os grows quadratically with the number of tasks in a job, and the I/O size

shrinks quadratically. In hyper-scale clusters, the daily I/O request count is very high (tens of
billions), with the average block size as small as 10s of KBs [48, 57]. These small I/Os stress the
host CPU [9, 29, 31]. Furthermore, to achieve high I/O throughput, recent works propose to use
dedicated servers or tasks to merge small disk/network I/Os [48, 57], which incurs even higher
host CPU overhead.
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2.2 Benefits of SmartNIC Offload
SmartNICs extend traditional network interface cards (NICs) with integrated processing units (e.g.,
general-purpose cores, FPGA, AISC), onboard memory, hardware accelerators, and an on-chip
network traffic manager. We mainly focus on multicore SoC SmartNICs because of their general-
purpose programmability [14, 16, 36], which enables flexible offloading of user-defined functions
that involve non-deterministic data structures or complex algorithms. We identify the following
key benefits of offloading shuffle-related operations onto SoC SmartNICs:
SmartNIC location is ideal. Since shuffle data must pass through the NICs, offloading shuffle-
related computation to the SmartNICs does not incur extra scheduling or network transfer overhead.
SmartNIC as a new pipeline stage. As shown in Figure 4b, the SmartNIC provides a natural
asynchronous pipeline stage between mappers and reducers. This means that a job’s shuffle-related
computation that happens on a SmartNIC can be made to overlap with other jobs’ map and reduce
stages running on the host CPU or with the same job’s downstream map stages. By offloading
CPU-costly shuffle operations, we can not only improve the execution time of a job (by allowing
its tasks to be scheduled earlier than otherwise) but also pack more jobs’ computation onto the
same host to improve efficiency.
Host-level I/O merging and data pruning. The SmartNIC is a perfect place to perform host-level
network I/O merging, data aggregation, and data filtering, because the NIC has a complete view
of the output of all map tasks from the local host, as well as all the shuffle data received from the
network. For example, a SmartNIC can merge small partitions from multiple map tasks to the same
destination into larger chunks to avoid small network I/O operations, optimizing communication
efficiency and CPU usage.
The data exchange between the SmartNIC and the local host occurs through PCIe, whose

bandwidth exceeds that of the NIC in many cluster settings. Figure 2 shows the read and write
performance of both DMA and RDMA for a Stingray 25Gb NIC [14], in which the NIC are using
the PCIe 3.0 x8 interface. The result shows that the network throughput of the NIC (NIC → r-host)
is 25Gbps while the network DMA bandwidth between NIC and local host (NIC → l-host) can
be up to ∼58Gbps. This brings opportunities for on-NIC pruning, e.g., shuffle data aggregation
and filtering on the NIC to reduce outbound network traffic. In the near future, the industry will
universally adopts PCIe 4.0 (maximum throughput 256 Gbps) and eventually PCIe 5.0 (512 Gbps),
which further increases the opportunity for on-NIC pruning.
Why not use host cores: SmartNICs are closer to the network than host cores. By aggregating
and pruning data received over the network before sending it to the host, the NIC cores can help
reduce data movement across PCIe.

Furthermore, SmartNICs are already widely deployed in data centers [2, 20], with existing clusters
leaving significant NIC computational resources unused. Thus, there is a growing body of research
on SmartNICs with a focus on utilizing these free on-NIC compute units to improve specific types
of applications [26, 33, 34, 47]. Our work is aligned with this research and aims to leverage these
unused resources to accelerate data-intensive workloads.

2.3 Challenges of SmartNIC Offloading
We identify the following challenges in offloading shuffle-related computation to SmartNICs:
Limited memory. Shuffle stages typically transfer data far larger than the on-NIC DRAM (4GB--
16GB). Offloading stateless operators, such as partitioning, can be easy as they can operate with a
small local working set. However, offloading stateful operators such as aggregation and sorting
requires a large view of the dataset. Such operators usually cannot fit into the on-NIC memory,
making it difficult to fully offload them.
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Limited CPU. SmartNICs today have fewer and slower cores than the host server. In Figure 3,
we measured the performance of three shuffle-related computations on the ARM64-based NIC
core (@3.0GHz) using the Stingray NIC [14], and the Intel E5-2650v4 x86 host core (@3.2GHz). We
found that the NIC’s per-core throughput is generally 1.5×–2.5× slower than that of the host core.
Even with the emergence of new SmartNIC architectures with stronger compute units, such

as the NVIDIA Bluefield DPU [37] and the Intel IPU [25], the performance gap between the host
and SmartNIC still exists. Recent research on the newest Bluefield DPU shows that the on-NIC
embedded processors are weaker than the general-purpose server cores in most computation tasks
(as shown in Figures 7 and 8 in [32]). Therefore, when offloading, great care must be taken not to
overwhelm the NIC hardware.

Figure 4b demonstrates why a slow SmartNIC can lead to less effective offloading. The example
shows that a slow SmartNIC can cause a performance bottleneck, and the reduce task will be
hindered by the slow SmartNIC, resulting in an extended job completion time. Our main design
challenge is to ensure that on-NIC computation does not block the host while maximizing the
amount of work offloaded to the SmartNIC.
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3 SMARTSHUFFLE OVERVIEW
SmartShuffle is a high-performance data shuffling service for big data analytics that leverages
SmartNIC offloading. SmartShuffle allows big data frameworks to offload a set of common oper-
ators that are tightly coupled with the shuffle process. These operators as well as the network
communication process are offloaded onto SmartNICs in a dynamic, best-effort manner.
SmartShuffle uses the following ideas to address the challenges in Section 2.3 as well as fully

leverage the benefits mentioned in 2.2: (1) To deal with limited on-NIC memory, we develop partial
offload and spilling to ensure that the offloaded stateful operators fit within a SmartNIC’s memory.
SmartShuffle identifies appropriate spilling strategies for different types of operators to achieve
the best performance. (2) To maximize the amount of work offloaded to the SmartNIC without
causing the typically slow SmartNIC cores to become a bottleneck, SmartShuffle utilizes a rate-based
dynamic migration policy. This policy monitors the SmartNIC’s load and controls the amount of
work offloaded to the NIC at runtime (as shown in Figure 4c). (3) To achieve the best I/O efficiency,
we employ a coordinated offload architecture to leverage both map-side and reduce-side SmartNICs,
minimizing both outbound network traffic and inbound NIC-PCIe traffic.

Figure 5 shows the overall architecture of SmartShuffle. With the coordinated offload architecture,
both map-side and reduce-side SmartNICs are involved, and the architecture includes four logical
components: 1) A shufflemanager, which monitors the execution process of map and reduce tasks
and controls the shuffle operation across the cluster. 2) The shuffle agent, which is launched in each
node of the cluster when the SmartShuffle service starts. It manages host-NIC communication and
enforces the rate-based dynamic migration policy. By detecting whether the NIC is the performance
bottleneck in the shuffle phase, the shuffle agent determines how much work is offloaded to the NIC
and how much work is performed on the host. 3) Shuffle workers, each of which is an individual
on-NIC thread that runs one or more offloaded stateful/stateless operators. The worker enforces
partial offloading, in which the stateful operator uses spilling to avoid the worker state exceeding
the memory limit. 4) The traffic scheduler, which is an on-NIC orchestration thread that offloads
shuffle’s all-to-all network communication process. It also balances incoming network data among
different on-NIC worker threads.
WorkflowOverview Figure 5 illustrates the basic data flowwhen applied to an analytics framework
such as Spark. At the beginning of each shuffle phase, the SmartShuffle manager fetches control
plan information, such as map/reduce task locations and partition strategies, from the framework’s
task scheduler ( 1 in Figure 5). The SmartShuffle manager then passes these control messages to
SmartNICs, which initiate shuffle work threads based on these control messages.
When a map task finishes execution, it requests a DMA-registered memory region from the

buffer pool maintained by the SmartShuffle agent. The map task then writes shuffle data to this
memory region through the zero-copy interface ( 2 in Figure 5). Then, if the NIC currently is not
overloaded, the SmartShuffle agent notifies the map-side SmartNIC’s traffic scheduler of the data
location in the buffer pool. Otherwise, the SmartShuffle agent launches extra threads on the host to
on-load part of the shuffle computation.
The map-side SmartNIC’s traffic scheduler fetches the mapper output from the host through

DMA reads ( 3 in Figure 5) and then load-balances the data across parallel shuffle worker threads
( 4 in Figure 5). Each worker thread runs the partitioning function and other user-defined common
operators, such as aggregation, sorting, and filtering. When the on-NIC worker finishes processing
a batch of data or when the memory usage of the stateful computation exceeds the SmartNIC limit,
the worker spills the processed data to the traffic scheduler, which sends it to the network.

The traffic scheduler manages network transfers and dispatches data partitions to the destination
SmartNIC (i.e., where reduce tasks are running). This induces an all-to-all communication process
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API Description
Driver
registerShuffle(id:Int, Register a new shuffle, users need to specify reduce tasks’

loc:LocReduce, parti:BaseOP, locations and the base shuffle operator. Optionally, users can specify
op:ReorgOP, spill:SpillStrat) the on-NIC data-reorganization operator and its spilling strategy.

Map Task
bufAcquire(size:Int) Acquire a DMA registered buffer from SmartShuffle Agent.
bufProduce(buf:Buf) Indicate the data in this buffer is ready to be read by the SmartNIC.
Reduce Task
bufConsume(id:ReduceTaskId) Get a ready-to-read shuffle block from SmartShuffle Agent.
bufRelease(buf:Buf) Release the buffer block back to SmartShuffle Agent.

Table 2. SmartShuffle APIs

Shuffle Operators Description
Base Shuffle Operator
Partition Partition tuples according to the key.
Data-reorganization Operator
Sort Sort tuples according to the key.
Aggregate Merge same-key tuples using the reduce function.
Filter Drop tuples when key/value satisfy conditions.

Table 3. Shuffle operators defined in SmartShuffle

between mappers’ and reducers’ SmartNICs ( 5 in Figure 5). The reduce-side SmartNIC collects all
the fragmented partitions from mapper nodes, merges them into large blocks, and assigns them to
the on-NIC worker threads ( 6 in Figure 5). The reduce-side shuffle worker receives data from all
mapper nodes. It then performs a second round of aggregation, sorting, and filtering across the
nodes.
Finally, the traffic scheduler on the reduce-side SmartNIC uses DMA write to place the pre-

processed, merged large data blocks (MBs) into the SmartShuffle agent’s buffer pool. Once the
reduce task launches, it uses large sequential zero-copy reads to directly access these shuffled data
blocks.

4 SMARTSHUFFLE DESIGN
In Section 4.1, we describe the APIs and two categories of shuffle operators in SmartShuffle: the basic
shuffle operator and data-reorganization operators. Then in Section 4.2, we explain SmartShuffle’s
coordinated offload and how it handles both compute and I/O. Next in Section 4.3, we introduce the
liquid offloading technique, which consists of two parts: partial offloading and workload migration.
Finally, in Section 4.4, we describe how we load balance workloads among multiple on-NIC workers,
and how to support multiple jobs/queries.

4.1 SmartShuffle APIs and Shuffle Operators
We first describe the SmartShuffle APIs and shuffle operators, and how they can be integrated into
a framework like Spark.
SmartShuffle APIs. The high-level APIs are shown in Table 2. Before a shuffle phase starts, the
Spark framework calls the registerShuffle() function to specify the locations of reduce tasks and the
operators that will run on the SmartNIC worker.
The SmartShuffle agent exposes two categories of zero-copy APIs for map/reduce tasks to

operate on its DMA-registered buffer. To operate on the DMA-registered buffer provided by the
SmartShuffle agent, a map task can use the bufAcquire() function to acquire an empty buffer and
then call bufProduce() to notify that the data in this buffer is ready to be posted to the NIC. A reduce
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task can call bufConsume() to obtain a ready-to-read shuffle block and then use bufRelease() to
return the buffer to the pool when computation is complete. These APIs for tasks are asynchronous
which facilitates pipelining of host and SmartNIC processing.
Shuffle Operators. There is a set of operators running on the SmartNIC workers when calling
the registerShuffle() function. Table 3 shows two categories of shuffle operators. The base shuffle
operator provides basic shuffle offloading like partitioning mapper outputs according to a key using
a hash or a range partition function.
Data-reorganization operators are those that the user optionally wishes to perform right before

or after the shuffle phase in an execution plan. These operators rearrange the tuples within each
partition based on keys or values to either reduce the volume of network traffic or facilitate reduce
task computation.

To illustrate how these operators help with complex queries, we use one TPC-H query [8] as an
example. Specifically, we focus on a part of TPC-H query 13, which involves a filter, a join between
two tables, a groupBy operation, and a count. Figure 6 shows its execution plan in Spark SQL,
which involves three exchanges 1, two for join and another for aggregation.

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 . 𝑗𝑜𝑖𝑛(𝑜𝑟𝑑𝑒𝑟, ”𝑐_𝑐𝑢𝑠𝑡𝑘𝑒𝑦” === 𝑜𝑟𝑑𝑒𝑟 (”𝑜_𝑐𝑢𝑠𝑡𝑘𝑒𝑦”)
&&!𝑠𝑝𝑒𝑐𝑖𝑎𝑙 (𝑜𝑟𝑑𝑒𝑟 (“𝑜_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 ′′)), “𝑙𝑒 𝑓 𝑡_𝑜𝑢𝑡𝑒𝑟 ′′)
.𝑔𝑟𝑜𝑢𝑝𝐵𝑦 (”𝑜_𝑐𝑢𝑠𝑡𝑘𝑒𝑦”).𝑎𝑔𝑔(𝑐𝑜𝑢𝑛𝑡 (”𝑜_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦”))

In this example, SmartShuffle offloads the three exchanges (red boxes) using the base shuffle
operator as well as the sorting and local hash aggregate (green boxes) because they are either
immediately before or after the exchange.
In the original execution plan, after the exchange, each partition needs sorting before running

merge join. By offloading the sorting to the SmartNIC, the reduce task can directly apply sort-merge
join on the ordered data blocks instead of the unordered data. In addition, in the execution plan,
each map task does a local aggregation before the exchange. By offloading this aggregation, less
work is performed on the host thus map tasks can finish earlier.

4.2 Shuffle Offloading
In this section, we first explain how SmartShuffle offloads shuffle operators using the coordinated
offload architecture. Then we explain how SmartShuffle offloads network I/O operations using the
on-NIC traffic scheduler.

4.2.1 Coordinated Offload Architecture.
Two-level partition: In vanilla Spark, each map task creates partitions based on the number of
reduce tasks (shown in Figure 7(a)). If there are 𝑛 map tasks at each node and a total of𝑚 reduce
tasks for a job, the total number of partitions in a single mapper node is 𝑛 ×𝑚. Thus, if we consider
a job of 1000 nodes, with 50 map tasks and 50 reduce tasks per node, the total number of partitions
created on each node would be ∼ 2.5𝑀 . This huge number of partitions can result in small and
random shuffle I/O requests. This severely degrades the system performance by: 1) Increasing the
number of CPU cycles to deal with these requests [9, 29]. 2) Stressing the network/storage system
due to IOPS (I/O operations per second) limitations [48, 57]. 3) Resulting in a bottleneck at the
partitioner due to high memory buffer requirements. [43]

To overcome these limitations, SmartShuffle uses the two-level partition, which turns the shuffle
process from per-task granularity to per-node granularity (shown in Figure 7(b)). Here, the map-side
SmartNIC workers merge the output from multiple map tasks and partition data according to the

1An exchange in Spark SQL is the same process as a shuffle in Spark.
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number of the reducer nodes. The reduce-side SmartNIC gathers all the data partitions sent from
multiple map-side SmartNICs, and repartitions the data based on the local reduce task number at
the node.
With the same example above, the number of per-node partitions in SmartShuffle is only 1𝐾 .

This avoids small and random shuffle I/O requests. Also, this avoids remote block fetch overhead on
the reducer, as reduce tasks can directly read large shuffled data blocks from a contiguous memory
region prepared by the SmartNIC.
Two-level computation: SmartShuffle further offloads the data-reorganization operator through
its coordinated offload architecture. This reduces the host CPU overhead and minimizes the traffic
amount to the network and to reduce tasks.

Data pruning operations such as aggregation and filtering on the map-side SmartNIC can reduce
outbound shuffle data to the network. Data reduction operations on the reduce-side SmartNIC can
reduce the data delivered to the host CPU across multiple data sources.
As for the sorting operator, the reduce-side SmartNIC can benefit from the pre-sorted output

from the first level, and further sorting at the reduce-side SmartNIC reduces the workload for
reduce tasks running on the host CPUs.

4.2.2 Network Transport Offload. The on-NIC traffic scheduler handles the all-to-all network
communication process. SmartShuffle leverages RDMA as the underlying transport due to its
low CPU overhead for network I/O [29]. As Figure 8 shows, when an on-NIC worker completes
processing its assigned workload, it calls a spill function to notify the traffic scheduler that certain
data is ready to be sent to the destination endpoints. The spill function is triggered when: 1) stateless
operators finish processing a batch of data; or 2) the state in a stateful operator exceeds the on-NIC
memory limit. All network transfers are batched into large RDMA Reads, as each worker thread
batches shuffle data into large chunks for each partition, and spills the chunks only when they
reach the spilling threshold.

4.3 Liquid Offloading
Partial offloading and spilling: Stateful operators, such as sort and aggregation, require a large
view of the data to be processed, which can exceed the onboard memory capacity of the SmartNIC.
To solve this problem, SmartShuffle uses partial offloading and spilling — the SmartNIC partially
aggregates/sorts the data sent from the workers, and does not guarantee a fully aggregated/sorted
result. When a worker’s memory usage exceeds the limit, SmartShuffle triggers spilling, which sends
partially aggregated/sorted results or unprocessed intermediate data to the network/host, i.e., the
map-side SmartNIC spills the data to the reduce-side SmartNIC and the reduce-side SmartNIC spills
the data to the host. Subsequently, the receiver SmartNIC or reduce workers only need to process

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 36. Publication date: June 2023.



Towards Accelerating Data Intensive Application’s Shuffle Process Using SmartNICs 36:11

the remaining part of the computation (e.g., final aggregation/merge sort), which significantly
reduces the workload on the receiver side.

SmartShuffle supports two different spilling strategies:
(1) Spilling the worker states: SmartShuffle can spill the current worker’s state to free up

memory. For example, in the aggregation operator, the worker maintains a hashmap to
aggregate incoming tuples. When the size of the hashmap exceeds the spilling threshold, the
worker spills all the entries inside the hashmap to the receivers, frees up the hashmap, and
creates a new one for future incoming data.

(2) Spilling the incoming data: Another spilling strategy is to spill incoming data instead
of spilling the worker’s state. Again using the aggregation operator as the example, when
the hashmap reaches its size limit, SmartShuffle can spill incoming data to the next hop if it
cannot be aggregated with the current records inside the hashmap.

One side-effect of spilling incoming data is that the SmartNIC might spill unprocessed data
blocks directly to the next hop. For example, in the sorting operator, the SmartNIC might send
unsorted data blocks to the host. Therefore, the spilling strategy should be decided according to
the reduce-side logic. For example, if the reducer uses TimSort [7], both spilling strategies would
work as TimSort does not assume that incoming data blocks are sorted. However, if the reducer
uses merge sort, the NIC should choose to spill the worker states. The spilling strategy is defined
when the user calls the “registerShuffle” function (Table 2).

Spilling is also triggered when all map tasks finish. SmartNICs flush the remaining data in the
worker to the reducer.
Workload Migration: We use dynamic job migration to launch extra worker threads on the
host and move some of the shuffle computation from the SmartNIC to the host cores. The shuffle
agent decides how much work to offload to the NIC and how much to perform on the host. When
designing the migration, two factors are considered: (1) the signal that captures the SmartNIC’s
slowness, and (2) the amount of work to migrate to the host worker.
For (1), the buffer occupancy of the dedicated buffer pool shared by the map tasks and the

SmartNIC is used as the signal. High occupancy implies that the SmartNIC is relatively slow in
draining the mapper outputs, and more data from the map tasks will likely be blocked due to the
lack of buffer slots.
For (2), a threshold for the buffer occupancy can be set to trigger migration. However, this is

not effective for batch analytic jobs, as the map tasks generate shuffle data in bursts. For example,
the occupancy might suddenly exceed the threshold when a batch of map tasks finishes. However,
there is no need to trigger migration if the NIC can consume all the data before the next batch of
map tasks start to produce data. To better adapt to batch analysis jobs, we calculate the growth
rate of the buffer occupancy over a time window 2. If the growth rate is positive, the SmartNIC
is deemed the system bottleneck, and the shuffle agent launches worker threads on the host. The
mapper output is then partitioned between the host worker and NIC workers to make the buffer
occupancy’s growth rate reach 0, using the given ratio R:

𝑅 =
𝑀𝑎𝑝𝑝𝑒𝑟_𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑_𝐷𝑎𝑡𝑎_𝑂𝑣𝑒𝑟_𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤

𝑁𝐼𝐶_𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑_𝐷𝑎𝑡𝑎_𝑂𝑣𝑒𝑟_𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤
− 1

4.4 On-NIC Workload Scheduling
SmartShuffle’s on-NIC traffic scheduler launches multiple workers to run the same operators in
parallel. The on-NIC workers that run the same set of operators form a scheduling group. If there
2The window size is dynamically updated according to the average map task duration.
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are multiple jobs/queries/shuffle phases running on the host, each job/query/shuffle phase has its
own scheduling group. Figure 8 shows an example of four workers and two scheduling groups,
with each worker running a chain of the partition and sort operator. The traffic scheduler load
balances the incoming shuffle data among workers within each scheduling group; it maintains one
centralized first-come-first-serve queue per scheduling group.

Note that SmartShuffle applies network I/O merge within a scheduling group. For example, even
if the output of map tasks from different jobs share the same destination node, SmartShuffle only
merges the data that belongs to the same job.
The traffic scheduler controls the load assigned to each worker with fine granularity. When an

incoming data block is too large, (for example, the NIC uses a large RDMA read request to fetch
the data), the traffic scheduler segments the large data block into appropriate sizes (approximately
100KB) before enqueuing them into the FCFS queue. This is because smaller scheduling units help
balance the workload and reduce the impact of stragglers on the NIC.

5 IMPLEMENTATION
We implemented SmartShuffle components on Stingray PS225 SmartNIC [14] with 4K+ lines of
C++ code. The host-side SmartShuffle agent and shuffle manager are implemented using 2K+ lines
of Scala to interface with Spark 2.4. We implemented SmartShuffle agent as a shuffle manager
plugin for Spark, so that the user can switch between SmartShuffle and the default Spark shuffle
engine with a single line of configuration. In this section, we focus on explaining how we interface
SmartShuffle with the Spark.
Accelerating Shuffle: In Spark, some RDD functions, e.g., groupByKey, sortByKey and distinct
introduce a shuffle. For these functions, SmartShuffle offloads the shuffle operators onto the Smart-
NIC. Furthermore, SmartShuffle chooses to offload different types of data-reorganization operators
for different RDD functions; e.g., we offload the aggregation operator for reduceByKey, groupByKey,
aggregateByKey functions, sorting operator for sortByKey, repartitionAndSortWithinPartitions func-
tions, and filtering operator for the distinct function.
Due to liquid offload, SmartNIC may give partially sorted/aggregated results to Spark reducers.

We argue that reducers can directly benefit from these partially computed results. First, the default
sort algorithm in Spark on the reduce side is TimSort [7]. It does not assume that the incoming
data blocks are sorted, but it can take advantage of the ordering of some of the sorted sub-blocks.
By providing partially sorted data segments to the reducer, it can experience a performance gain.
Second, Spark implements aggregation and distinct functions using a hashmap, and by reducing the
amount of data sent to the host via on-NIC pre-aggregation and pre-filtering, the overall hashmap
inserting time in the Spark reducer is minimized.
Obtain the Reduce Task Location: In SmartShuffle, the shuffle phase starts once mapper tasks
start to generate outputs, and when the aggregated data size exceeds the NIC memory capacity,
the SmartNIC spills the data to the reduce tasks. However, in Spark, reduce tasks are scheduled
only when most of the mapper tasks are finished, which might be too late for SmartShuffle. In our
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Shuffle Functions Shuffle Manager Map Stage Reduce Stage Total Job Offloaded Operator
in Spark CPU Time (s) CPU Time (s) Duration (s)

partitionByKey Spark 1010.8 590.4 27.5 N/A
SmartShuffle 758.0 (-24%) 580.5 25.3 Partition

reduceByKey Spark 1668.1 107.3 21.2 N/A
SmartShuffle 1203.2 (-28%) 40.9 (-63%) 15.7 (-26%) Partition + Aggregation

sortByKey Spark 1381.9 1403.9 50.1 N/A
SmartShuffle 987.5 (-28%) 912.1 (-34%) 36.2 (-28%) Partition + Sorting

distinct Spark 1549.4 77.8 24.1 N/A
SmartShuffle 1296.3 (-16%) 24.0 (-68%) 17.4 (-27%) Partition + Filtering

join Spark 251.4/652.6 1597.8 18.1 N/A
SmartShuffle 169.8/469.2 1472.3 15.46 (-15%) Partition

Table 4. Spark shuffle functions performance breakdown. Map stage and reduce stage’s total CPU
time is obtained by summing the CPU time of all worker cores.

implementation, we modified the Spark task scheduler to allow SmartShuffle obtain reduce tasks’
location earlier. As shown in Figure 5, the Spark task scheduler provides reduce task placement
information to SmartShuffle once some map tasks start to generate outputs.
There are alternate design options. If it is difficult to obtain reduce task location in advance,

SmartShuffle could send the spilled data to intermediate storage/memory nodes. After the reducer
task launches, it fetches the shuffle data from these storage/memory nodes. Using intermediate
nodes to store the shuffle data has been a common design choice in large-scale clusters. For example,
LinkedIn uses such design to improve system scalability [48], and SmartShuffle can fit into such
design to further improve shuffle performance. As another option, after SmartShuffle spills data to
intermediate storage nodes, the storage nodes could coordinate with a task scheduler to launch
reduce tasks close to their shuffle data location. In such cases, we can further use spilled data
properties to drive when/what computation tasks run. Such a "data-driven" approach has been
investigated recently [21].
Shuffled Data Persistency: The shuffled data in Spark is first partitioned and then materialized to
storage at the mapper node before the shuffle phase. However, SmartShuffle offloads partitioning to
the NIC and since the NIC may not have enough storage to persist partitions, SmartShuffle persists
shuffled data on the reducer-side. Specifically, the reducer-side shuffle agent materializes the pre-
processed shuffle blocks using large, sequential disk writes. After reduce tasks are launched, they
retrieve the materialized shuffle data using large sequential disk reads and perform computations
on them.

The trade-off here is that more work needs to be repeated if a reducer node fails, as the results of
the incoming map tasks will be lost. If intermediate storage nodes are used, SmartShuffle could
persist the shuffle data in those storage nodes, similar to the approach used by Whiz [21] and
Magenet [48].

6 EVALUATION
In this section, we evaluate SmartShuffle on Spark using a combination of the Hadoop BigData [3]
benchmark and the TPC-H benchmark [8]. We present the evaluation results in two parts: First,
Section 6.2 presents the performance of the building blocks in SmartShuffle. We use the BigData
benchmark to demonstrate: 1) Various Spark shuffle functions can benefit from SmartNIC offload,
leading to lower job completion time and higher host CPU efficiency. 2) Workload migration avoids
the SmartNIC becoming a performance bottleneck for non-line rate operators. 3) The coordinated
offload architecture achieves better aggregation performance compared to Spark. 4) Different
spilling thresholds can influence the system performance.
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Fig. 9. (a) - (c) shows CPU profiling of the original Spark and Spark with SmartShuffle. (d) shows
different types of tasks’ average execution time and launch time when running reduceByKey

Worker Parti only Parti + Agg Parti + Sort
Num 8B 32B 8B 32B 8B 32B

1 11.96 10.8 1.46 1.82 0.47 0.38
4 26.18 27.15 4.13 4.73 1.76 1.17
8 28.12 29.44 6.08 7.20 3.12 1.95

Table 5. For different types of computation, NIC workers’ throughput (in Gbps) under 8B/32B key
size. We use a fixed value size (4B Integer) and fixed spilling threshold (16MB).

Second, Section 6.3 presents the end-to-end performance of SmartShuffle using a standard bench-
mark, TPC-H. Here, we also measure the I/O aggregation performance achieved by SmartShuffle.

6.1 Testbed and Methodology
We evaluate SmartShuffle in a testbed of 4 Dell PowerEdge R630 servers. Each server has 20 cores
(Intel E5-2650 v4 at 2.3GHz) and 40 hyperthreads, with 128 GB RAM. Every server is equipped with
a 25GbE Stingray PS225 SmartNIC [14] which has an 8-core ARM A72 processor at 3.0GHz and
16GB NIC RAM. To support high-performance RDMA communication between NICs, we turn on
Priority-based Flow Control (PFC), Explicit Congestion Notification (ECN marking), and DCTCP
congestion control in both the switch and the SmartNIC [4]. These configurations allow all RoCE
packets to run on a lossless network, with low-level hardware congestion management in the
switch and NICs.
We use one Spark executor per machine, each with 64GB of memory and 40 logical cores. We

also disable data compression during the shuffle, which we found compression will slow down
the job due to CPU overhead. We run our experiments multiple times to ensure our results are
reported based on a warm disk cache.

6.2 Building Blocks of SmartShuffle
In this section, we generate a 20 GB unsorted random sequence of records using the Hadoop
BigData generator [3]. We first show the overall performance gain, and then investigate how each
design component affects system performance.
Shuffle Function Performance: We evaluate SmartShuffle’s performance using different shuffle
functions shown in Table 4. We also report the host CPU utilization for a subset of the runs (Figure 9).
Overall, SmartShuffle reduces job completion time by 10% to 30% compared to Spark. Additionally,
SmartShuffle significantly reduces host CPU usage.
For the partitionByKey function, we offload the hash partition operation onto the NIC. The

result shows that the map stage executor runtime decreases by 24% since all map tasks avoid
shuffle-related computation and can complete earlier. This can be directly observed in Figure 9a.
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Fig. 11. reduceByKey performance in Spark and SmartShuffle
(SS). We measure the job runtime and total shuffle read size

in the shuffle stage.

From 5s to 9s, which is the tail of the map stage, the CPU usage for the partitionByKey function is
reduced.

The reduceByKey function aggregates the values corresponding to each unique key using sum().
SmartShuffle offloads both the partition and the aggregation operator for this function. In reduce-
ByKey, Spark performs an aggregation locally on each mapper before sending the results to a
reducer. This local aggregation requires the map tasks to spend significant CPU cycles (9s to 15s
in Figure 9b). In SmartShuffle, the aggregation happens in the SmartNIC, which allows the map
task to bypass the aggregation computation. Thus, the map stage executor runtime is reduced
by 31% in SmartShuffle; there is also a substantial CPU usage reduction (Figure 9b). The reduce
stage’s performance is also improved by SmartShuffle because Spark does local aggregation only
within each map task, but SmartShuffle does cluster-wide aggregation with its coordinated offload
architecture, which has a better aggregation efficacy. In SmartShuffle, far fewer shuffle reads and
computations occur in the reducer. In total, the reduceByKey function shows over 35% performance
improvement.
The sortByKey first repartitions the RDD according to the given partitioner, then sorts each

partition by keys. SmartShuffle offloads the partitioning operator and the sort operator, and demon-
strates over 28% performance improvement. In sortByKey, Spark’s reducer uses TimSort [7], which
can benefit from partial sorted blocks from the SmartNICs. SmartShuffle improves the reduce stage
performance by 34%.

As for the distinct function, SmartShuffle offloads the partition operator and the filtering operators.
The filtering operator in the SmartNIC removes duplicated entries using a hashmap. The reduce
stage runtime can be greatly reduced (by 68%), since the SmartNIC has filtered out duplicates. The
total performance improvement is about 27%.

For the join function, the host CPU hash joins two tables based on the given join expression. The
hash join includes two steps: 1) co-partition the two tables’ tuples using a hash function and 2)
join the corresponding partitions of the two tables. In our current implementation, we only offload
the partition function for the hash join, and report the runtime of the two map stages and one
reduce stage. In total, SmartShuffle improved join performance by 15%. We do not show the CPU
usage for the distinct and join functions because they have similar behaviors as reduceByKey and
partitionBykey, respectively (Figure 9).
Understanding Performance Gain: Figure 9d shows tasks’ execution timeline with the reduce-
ByKey function, which helps us to further understand SmartShuffle’s performance gain. First, by
benefiting from computation offload, SmartShuffle accelerates the execution pipeline. Both map
and reduce tasks’ average runtime is reduced, especially the reduce task, as on-NIC aggregation
significantly reduces the amount of work a reducer needs to perform. Besides, although the on-NIC
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processing is slower than the host, SmartShuffleeffectively overlaps NIC computation with host
computation, which efficiently hides NIC’s processing latency. This helps reduce tasks launch much
earlier than in vanilla spark, helping further improve job run time.
NICWorker and Workload Migration: When the NIC’s throughput is slower than both the
mapper and line rate, workloadmigration is triggered. Figure 10, shows howworkloadmigration can
significantly improve the performance of SmartShuffle. In the sortByKey benchmark, NIC’s sorting
throughput cannot catch up with the map task’s data generation speed, and the buffer occupancy
growth rate is positive, triggering migration. With workload migration, the host will launch extra
worker threads to process the mapper output on behalf of the NIC when it is congested. As shown in
Figure 10, workload migration can significantly improve the performance of SmartShuffle. Without
it, the map stage can be slower than in the original Spark.
We also measure NIC workers’ throughput under different key sizes and computation types.

As shown in Table 5, SmartShuffle uses 4 worker threads to achieve the 25 Gbps line rate for
partitioning. However, for stateful operations, the NIC’s throughput cannot hit the line rate. For
example, for partitioning plus aggregation, the throughput is 4Gbps for 4 threads and 6Gbps for
8 threads; for partitioning plus sorting, the throughput is 1Gbps for 4 threads and 2-3Gbps for 8
threads.
Two-level Aggregation: We now show that SmartShuffle can achieve a high aggregation rate
using its coordinated offload architecture. We define data reduction size as the map stage’s output
size minus the reduce stage’s input size, and aggregation rate as the ratio of SmartShuffle’s data
reduction size to the ideal data reduction size 3. That is, the higher the aggregation rate, the more
data is pre-aggregated within the SmartNIC. If the aggregation rate is 100%, meaning the shuffle
data is fully aggregated before sending to the reducer. In Figure 10a, we vary the job parallelism for
the reduceByKey function and compare the job completion time and total shuffle read size in the
reduce stage.
In Spark, when the job parallelism is low, the system cannot fully utilize the CPU resources.

Therefore, the performance is improvedwhenwe increase the job parallelism from 20 to 40. However,
the performance drops when the parallelism grows from 80 to 160. This is because Spark’s pre-
aggregator aggregates shuffle data at task granularity, and when the map task parallelism increases,
the aggregation rate decreases. More shuffle data will be transferred to the reducers, further
degrading job performance.

In contrast, SmartShuffle always achieves a good aggregation rate regardless of the job parallelism,
and the job completion time remains stable under different parallelism levels. Note that SmartShuffle
achieves high performance even with low parallelism because the NIC reduces the host CPU load;
thus we can achieve the same performance using fewer cores.
Figure 10b shows how SmartShuffle’s aggregation performance changes with different node

counts, and how migration influences the aggregation rate. We vary the node number in the cluster
from 1 to 4 while keeping the total job parallelism the same. The lines in the figure show that
under different node counts, SmartShuffle always performs better than Spark, and the gap widens
as the node count decreases. When the node count is small, workload migration takes effect in
SmartShuffle, as each NIC needs to aggregate a larger range of keys making it a bottleneck. The
bars in Figure 10b show the shuffle read size. For both Spark and SmartShuffle without migration,
the read size remains unchanged as the node count increases. When migration is turned on, the
shuffle read size increases compared to no-migration SmartShuffle. This is because the migrated
data bypasses the two-level computation and only does single-level aggregation in the shuffle agent;

3Ideal data reduction is calculated using map stage’s output size minus job’s final output size.
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Fig. 12. Spilling performance with 4 workers.

as such, the aggregation rate is not optimized. However, even when migration is triggered, the
aggregation rate in SmartShuffle is still higher than Spark.
Spilling Overhead:We first evaluate how spilling influences stateful operators’ throughput. In
Figure 12a we show operator throughput under different spilling thresholds. We test two spilling
strategies for the aggregation operator: 1) spilling the worker state; 2) spilling incoming tuples. For
sorting, the spilling strategy is to spill only the worker state.
The result in Figure 12a shows that all operators have higher throughput when the spilling

threshold is low. This is because a large spilling threshold means more state is maintained inside
the worker; thus the worker’s working set will suffer from more L1/L2 cache misses. In addition,
the figure shows that spilling the input data has higher throughput than spilling the worker state.
This is because for the aggregation operators, spilling the worker state incurs the extra overhead of
destroying/reconstructing the hashmap.
Although increasing the spilling threshold may downgrade worker performance, it has the

advantage of improving the aggregation/sorting rate. As shown in Figure 12b, we change the
spilling threshold for each worker and measure the aggregation rate. When the spilling threshold
increases, the aggregation rate also increases, since the NIC worker uses more state to build a
bigger hashmap to store more distinct values. When the spilling threshold is larger than the key
range, no spilling would happen, and the NIC can aggregate all tuples that have the same keys.
Figure 12b also shows that spilling the input data yields worse aggregation rate than spilling the
worker state. This is because spilling the input data creates many not-fully-aggregated data blocks
and downgrades the aggregation rate.

6.3 Query Performance
We run the TPC-H benchmark with a scale factor of 50 and evaluate Query 1-6 and Query 11-14.
We haven’t integrated SmartShuffle with Spark SQL 4, so we implement all TPC-H queries using
the Spark RDD API. Table 6 shows the shuffle RDD functions that have been used in each query.
TPC-H query performance: Figure 13 compares the performance of vanilla Spark, Spark with
SmartShuffle, and Spark with RDMA plugins [1] in terms of job completion time. The results show
that, except for query 6, SmartShuffle brings a 15% to 40% reduction in job runtime compared to
vanilla Spark. SmartShuffle does not bring any performance improvement for query 6, as only a

4Spark SQL uses the DataFrames API, and requires extra support because 1) Spark SQL’s query optimizer changes the
execution plan and uses different sets of operators to achieve shuffle. We haven’t integrated SmartShuffle with the SQL
query optimizer yet. 2) Currently, SmartShuffle only supports serialized shuffle data in the row-by-row fashion, which is the
default in Spark. However, Spark SQL uses its own columnar storage and is quite different from Spark’s.
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Query ID Involved Shuffle Functions Query ID Involved Shuffle Functions
Q1 reduceByKey Q6 reduceByKey
Q2 join, sortByKey Q11 join, reduceByKey, sortByKey
Q3 join, reduceByKey, sortByKey Q12 join, reduceByKey
Q4 join, reduceByKey, distinct Q13 join, reduceByKey
Q5 join, reduceByKey Q14 join

Table 6. Involved shuffle functions in TPC-H queries
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very small amount of data (<20 KB) is shuffled in this query. The result also shows that SmartShuffle
doesn’t have overhead on the system when queries have no shuffle operation.

Spark RDMA can improve the performance of the baseline Spark by reducing networking-related
costs, but the performance improvement is less than 10%. In our cluster, we found that Spark
RDMA’s performance gain is relatively small. A similar observation can be found in previous
works [6] which find that Spark RDMA only brings a marginal performance gain of 3-4%.

SmartShuffle has better performance than Spark RDMA. This is because Spark RDMA improves
the shuffle performance by performing only data transfers over RDMA, but SmartShuffle uses a
more holistic approach and leverages computation offloads. The Spark job benefits not only from
the kernel-bypass networking, but also from computation offloading and data aggregation.
I/O efficiency: To show that SmartShuffle achieves better I/O efficiency, we measure the total
number of I/O requests during the shuffle. Figure 14 shows the total number of I/O requests in
Q13. To make a fair comparison, we compared the I/O request count for the join operation, as
SmartShuffle does not aggregate the data for join, thus the total transferred bytes are the same in
Spark and SmartShuffle.

Spark’s I/O overhead includes shuffle file reads on the mapper side, and remote network fetches
on the reducer side. SmartShuffle’s I/O overhead includes all the DMA/RDMA requests and the
shuffle file writes on the reducer side.

The result shows that Spark’s total I/O request count grows quadratically with a job’s parallelism.
While with SmartShuffle, the I/O request count is not influenced by parallelism, as SmartShuffle
does node-level I/O merging in the SmartNIC. Even though SmartShuffle incurs additional I/O
requests to DMA data to/from NIC cores, the total I/O request count is still much smaller than
Spark. Therefore, SmartShuffle greatly reduces the number of I/O requests during shuffle.
Comparing to Spark SQL and future work: Spark SQL is generally known to have better
performance than Spark RDD. This is because Spark SQL applies sophisticated join algorithms and
uses the Catalyst optimizer to plan queries [10]. Additionally, the serializer in Spark SQL is faster
than Spark’s default serializer. Figure 15 compares SmartShuffle’s performance with Spark SQL.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 36. Publication date: June 2023.



Towards Accelerating Data Intensive Application’s Shuffle Process Using SmartNICs 36:19

0

20

40

60

80

100

Q1 Q2 Q3 Q4 Q5 Q6 Q11 Q12 Q13 Q14

Ti
m

e 
(s

)

SmartShuffle Spark SQL

Fig. 15. Comparing SmartShuffle with Spark SQL.

Compared to Spark SQL, SmartShuffle has lower performance than Spark SQL in Q3 and Q4.
This is because Spark SQL benefits from its optimizer and serializer, and these optimizations play a
heavy role in these queries’ performance. However, and interestingly, SmartShuffle brings a 5%
to 35% reduction in runtime compared to SparkSQL for the many more remaining queries – Q1,
Q2, Q5, and Q11-Q14. Thus SmartShuffle can offer benefits even without the help of a powerful
optimizer/serializer in many cases.

The goal of SmartShuffle – to offload shuffle computation – is orthogonal to the query optimizer
whose focus is on the logical query plan. Thus we believe that when co-designed with a query
optimizer and serializer, SmartShuffle can bring very significant across-the-board benefits for all
queries. Integrating SmartNIC offload with the query optimizer – a challenging problem in itself –
is subject for future work.

6.4 Evaluation Takeaways
Our evaluation suggests that in the data analytic context, SmartShuffle helps to reduce the CPU
cost and network cost.
Reduce CPU Cost: Our results show that by offloading the data-reorganization operators (fil-
ter/aggregation/sort) to the NIC, SmartShuffle improves data-intensive application’s performance.
This is because offloading CPU-bounded computation to the SmartNIC reduces host CPU cycles,
and the reduced host cycles can be used to perform other host tasks in the execution pipeline,
therefore whole job completion time can be improved.
Reduce Network Cost: Our results shows that SmartNIC is a great vantage point to perform host-
level I/O aggregation and merging. With SmartShuffle, I/O request counts, mapper-side outbound
network traffic and reducer-side NIC-PCIe traffic are all greatly reduced; therefore SmartShuffle
improves performance by removing network bottlenecks.

7 DISCUSSION
FPGA NICs: FPGA NICs are alternative options for offloading shuffle operations, but they have
different strengths and weaknesses compared to SoC NICs. FPGA devices can offer significantly
higher performance for computations that involve deterministic program logic and regular data
structures, such as pattern matching, filtering, and aggregation. However, certain operations
in SmartShuffle, such as sorting and serialization/deserialization, involve irregular computations
with dynamic data structures that necessitate random memory access patterns. Synthesizing these
irregular computations on an FPGA can be challenging [23].
Compared with Using Host Cores: Using SoC SmartNICs is an attractive approach for enhancing
system performance. Compared to using host cores, using NIC cores has two key benefits. Firstly,
SoC NICs are specialized for I/O intensive tasks, and their on-chip ASIC-based network accelerators
(such as Nitro hardware switching in the StingrayNIC [14]) deliver better performance and efficiency
compared to general CPU cores. Secondly, SmartNICs benefit from their simple microarchitecture,
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resulting in greater energy- and cost-efficiency than host servers when offloading computations with
low IPC (instruction-per-cycle) and high MPKI (L2 cache misses per kilo-instructions) [33, 35, 47].
Different Bottlenecks: In Spark, CPU is the primary bottleneck [40]. SmartShuffle’s computation
offload and shuffle data pruning can alleviate this bottleneck and greatly improve performance.
When integrating SmartShuffle with different query engines [11, 18, 46], the impact of SmartShuffle
may vary depending on the specific bottleneck of the system/workload (e.g., CPU, disk, memory,
network). For instance, if the bottleneck is the disk, the primary benefits of SmartShuffle are
expected to come from I/O merging and data pruning rather than computation offload.

8 RELATEDWORK
Using Network Accelerators in Data Analytic Jobs: There has been great research interest
in improving the performance of data analytic jobs using network accelerators [27, 38, 39, 53].
JumpGate [38, 39] enables existing systems to execute SQL queries on network accelerators. At
the heart of JumpGate is a compiler that generates code for the operations in a query to run on a
network accelerator. However, JumpGate only improves performance when the network accelerator
can outperform the client system on the offloaded operations (see Section 6 of the paper). JumpGate
fails to improve performance when using a wimpy NIC core because it always offloads the full
operator to the network accelerator, which can become the performance bottleneck. In contrast,
SmartShuffle’s liquid offloading technique directly targets this problem.
Cheetah [53] accelerates database queries using switch pruning. Cheetah is aimed narrowly at

offloading the filter operation. In contrast, SmartShuffle is able to handle data-intensive shuffle
functions; the programmable switch cannot load these functions due to the inflexible programming
model and resource/timing constraints. We note that co-designing NIC and switch offloads to
jointly accelerate database queries is an interesting and open question.
SmartNIC Programming Model: Many previous SmartNIC works focus on providing a pro-
grammable framework for SmartNICs [26, 28, 30]. iPipe [33] is an actor-based distributed system
that offloads distributed applications to the SmartNICs. Floem [41] is a programming system that
uses the data-flow language to express the on-NIC packet processing. These approaches are not
optimized for data-intensive applications. In Floem, offloaded computations are stationary, and
NICs can easily become the bottleneck when tasks run out of the on-NIC CPU/memory. As such
Floem mainly supports per-packet processing tasks, which can run at line rate with minimal state
maintained. iPipe does not consider limited memory, and iPipe’s workload migration policy is
designed to minimize tail latency and does not fit batch analytics.

9 CONCLUSION
Shuffle is widely used in distributed data intensive applications and is one of the most resource-
intensive and time-consuming operations. We propose SmartShuffle, an optimized shuffle service
for big-data analytics frameworks. SmartShuffle helps offload the shuffle-related tasks and network
communication functions. It incorporates several key building blocks – that we believe can be
extended to other data-intensive workloads – to make offloaded computation fit within NIC
constraints without diminishing the overall performance. SmartShuffle improves job runs times by
40% job while improving host’s CPU and I/O efficiency.
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