
TCP is Harmful to In-Network Computing:
Designing a Message Transport Protocol (MTP)

Brent E. Stephens
University of Utah

Darius Grassi
UIC

Hamidreza Almasi
UIC

Tao Ji
University of Texas

Balajee Vamanan
UIC

Aditya Akella
University of Texas

ABSTRACT
This paper presents the motivation and design of MTP, a new
offload-friendly message transport protocol. Existing trans-
port protocols like TCP, MPTCP, and UDP/Quic all have key
limitations when used in a network that may potentially of-
fload computation from end-servers into NICs, switches, and
other network devices. To enable important new in-network
computing use cases and correct congestion control in the
face of ever changing network paths and application replicas,
MTP introduces a new message transport protocol design and
pathlet congestion control, a new approach where end-hosts
explicitly communicate messaging information to network
devices and network devices explicitly communicate network
path and congestion information back to end-hosts.

CCS CONCEPTS
• Networks → Transport protocols;

ACM Reference Format:
Brent E. Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee
Vamanan, and Aditya Akella. 2021. TCP is Harmful to In-Network
Computing: Designing a Message Transport Protocol (MTP). In
Proceedings of The 20th ACM Workshop on Hot Topics in Networks
(HotNets’21). ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3484266.3487382

1 INTRODUCTION
Existing transport protocols like TCP [35] are no longer a
good fit for the needs of today’s data center networks. There is
an increasing need for in-network computing, i.e., a network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets’21, November 10-12, 2021, Virtual Event, UK
© 2021 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-7020-2. . . $15.00
https://doi.org/10.1145/3484266.3487382

that provides offloads. Also, these multipath networks need
fine-grained load-balancing, scheduling, and performance
isolation. However, TCP and its stream abstraction are largely
incompatible with both of these needs.

The contributions of this paper are as follows: First, we
identify the emerging needs of today’s networks that are in-
compatible or hindered by the design of TCP. Second, we
present the preliminary design of MTP, a new clean-slate
transport protocol that is designed explicitly to meet the needs
of in-network computing. Third, we present results from sim-
ulations that demonstrate the potential benefits of using MTP.

In more detail, the following are the requirements that we
have identified are needed to support in-network computing
on multipath networks that are not met by TCP:
• Data Mutation: Offloads like compression and serializa-

tion change the size of data in a stream. This is incompat-
ible with the TCP stream abstraction.

• Low Buffering and Computation Requirements: The TCP
stream abstraction significantly complicates message re-
assembly and application-level message parsing. Further,
some types of middleboxes may need large packet buffers.

• Inter-Message Independence: Many application-level re-
quests are sent across the same TCP flow. This prevents in-
network caches from interposing on requests and bypass-
ing backends, and this prevents load-balancing different
requests in a flow across different servers for scalability.

• Multi-Resource and Multi-Algorithm Congestion Control:
There is a need to be able to simultaneously use any of
many new congestion control algorithms [3, 5, 6, 13, 17,
19, 30, 38] to share many different types of resources [4].
Further, load-balancing in multipath networks [2, 10, 14]
breaks congestion control in TCP when paths change
because the feedback and ideal window for the old path
is not guaranteed to be the same for the new path.

• Multi-Entity Isolation: TCP provides per-flow fairness.
This is not a good isolation policy. The service received
by an entity should not be based communication patterns.

We believe that these many limitations of TCP are funda-
mental, and that it is not possible to modify or extend TCP

61

https://doi.org/10.1145/3484266.3487382
https://doi.org/10.1145/3484266.3487382
https://doi.org/10.1145/3484266.3487382
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3484266.3487382&domain=pdf&date_stamp=2021-11-04

HotNets’21, November 10-12, 2021, Virtual Event, UK Stephens, Grassi, Almasi, Ji, Vamanan, and Akella

so as to meet all of these requirements. As such, there is a
clear need for a new transport protocol designed from the
ground-up to meet these new requests.

To overcome these limitations of TCP, this paper presents
the preliminary design of MTP, a new message transport
protocol. Building and deploying a clean-slate replacement
for TCP is a significant undertaking that needs to be com-
pleted before the full benefits of in-network computing can
be achieved in practice, and this new design is an important
first step towards accomplishing this goal.

There are two key aspects of MTP that are together able
to meet all of our requirements: a message transport protocol
and a new pathlet approach to congestion control. In the mes-
sage transport, messages are the granularity of retransmission,
scheduling, and load-balancing, and this allows for reordering
and mutation of messages. Pathlet congestion control enables
end-hosts to simultaneously track congestion state of many
different network resources with each resource using its own
type of congestion feedback. The network can dynamically
exert control over multipath routing and load balancing. End-
hosts ensure that each pathlet is not congested by evolving
congestion windows and/or computing rates. Further, MTP
performs congestion control at the coarser granularity of traf-
fic classes, not flows; flows that use the same pathlet share
congestion information. Thus, our design provides stronger
isolation among entities.

Our preliminary evaluation demonstrates that MTP enables
key emerging in-network computing applications. Using ns-3
simulations, we show that MTP enables efficient multi-path
congestion control and achieves significant throughput im-
provement over existing state-of-the-art. By providing visi-
bility into message sizes, MTP empowers load balancers to
achieve optimal bandwidth utilization while avoiding costly
packet reordering. Lastly, MTP equips operators to define and
enforce network policies at a coarser granularity (e.g., tenants,
traffic classes) than at flow granularity, which is known to
cause unfairness among applications.

2 MOTIVATION
In-network computing has become commonplace to meet the
needs of emerging applications. This section discusses key
properties needed to support in-network computing and why
transport protocols like TCP fail to meet these requirements.

2.1 The Need for In-Network Computing
Figure 1 shows an example computing cluster where in-
network computing is used to accelerate a document lookup
in a dynamic website like Facebook or Twitter. There are
three different types of functionality in this figure:

First, there are computational offloads inside the network.
In (1) in this figure, there is an application-aware cache that

client cache LB

node 1

node 2

node 3

(1) (3a)(2a) (3b)

(2b)= marked CE bit message

= message

Figure 1: A network that benefits from in-network computing

is used to store hot documents and directly answer popular
queries, bypassing the backend [16].

Second, the network performs load balancing and sched-
uling in the network and across different types of resources.
In this example, (2a) shows an application-aware (L7) load-
balancer that balances requests across different backend stor-
age replicas [24], and (2b) shows packets being load-balanced
across parallel paths in a multipath topology [2, 9, 10, 32].

Third, the network computes and communicates conges-
tion control feedback, and this also happens at both network
and application layers. In (3a), a request traverses a congested
link and has the CE bit in its IP header set [8]. In (3b), a
request lands at a congested replica, and information about
processing latency and queue occupancies are communicated
back to the load-balancer [42].

Further, there are many more approaches that utilize in-
network intelligence. For example, recent work has offloaded
computation to the network for key value stores [16, 24, 25],
machine learning [23, 37], and intrusion detection systems
(IDSes) [45]. Other work has shown the benefits of load-
balancing and scheduling [2, 9, 10, 12, 18, 29, 32, 39, 40, 44,
47]. There are many new congestion control algorithms [3, 5,
6, 13, 17, 19, 30, 38], and recent work has shown the benefits
of application-level congestion-control [4, 22, 46].

2.2 Transport-Level Requirements
To seamlessly support in-network computing, the transport
protocol must provide the following features:
Data Mutation: Useful offloads that mutate packets and
change message lengths include compression, message serial-
ization [36, 43], and request preprocessing [20, 33].
Low Buffering and Computation Requirements: High-
throughput devices like switches can implement offloads,
but switches have limited state and computational power. To
enable devices with limited compute, state, and buffering
capacity, offloads should be able to process messages with
bounded state and buffering requirements. Thus, it is impor-
tant to provide message attributes in each packet.
Inter-Message Independence: Independent messages should
be able to be sent to different offloads and end-hosts, and
the network should be able to dynamically alter paths to
perform load-balancing and scheduling without packet re-
ordering. This is necessary for the in-network cache offload
and multipath load-balancing in Figure 1. It is also necessary

62

TCP is Harmful to In-Network Computing HotNets’21, November 10-12, 2021, Virtual Event, UK

Low Buffering Multi-Resource &
Transport & Computation Inter-Message Multi-Algorithm Multi-Entity

(RPF = requests per flow) Data Mutation Requirements Independence Congestion Control Isolation

TCP Pass-Through (many RPF) ✗ ✓ ✗ ✗ ✗
TCP Pass-Through (one RPF) ✗ ✓ ✗ ✗ ✓
TCP Termination (many RPF) ✓ ✗ ✗ ✗ ✗

TCP Termination (one RPF) ✓ ✗ ✓ ✗ ✓

DCTCP ✗ ✗ ✗ ✗ ✗
UDP ✓ ✓ ✓ ✗ ✗

QUIC ✗ ✓ ✓ − ✗
MPTCP ✗ ✗ ✓ ✓ ✗

Swift ✗ ✓ ✗ ✗ ✗

RDMA RC ✗ ✓ ✗ ✗ ✗
RDMA UC ✗ ✓ ✗ ✗ ✗
RDMA UD ✓ ✓ ✓ ✗ ✗

Table 1: Comparison of features available in current transport protocol approaches

for an in-network KVS offload like NetCache [16] and for an
in-network ML accelerator like ATP [23].
Multi-Resource and Multi-Algorithm Congestion Control:
There many different types of resources (pathlets) on a path
across the network to an application, and congestion control
enables these resources to be shared without explicit sched-
uling. However, congestion control feedback should be ac-
tionable by end-hosts even if the resources being used change
dynamically. For example, the in-network cache and the dif-
ferent backends in Figure 1 likely have different throughputs,
and this is also the case for an in-network KVS. To avoid
either under or over utilization depending on which resource
is being used, end-hosts should be able to identify which
resource/pathlet congestion control feedback is for. Addition-
ally, different resources may want to provide different forms
of congestion control feedback.
Multi-Entity Isolation: Different messages have differing util-
ity, and the number of messages and flows generated by an ap-
plication is not necessarily proportional to utility. For sched-
uling, load-balancing, and congestion control, it should be
possible for devices to identify the provenance of every mes-
sage and apply per-entity policies.

2.3 Limitations of TCP Variants
TCP can be used in many different ways. The number of open
connections and the distribution of requests can vary. Some
application-level (L7) load-balancers terminate TCP connec-
tions, while network-level middleboxes are often passthrough
devices [21]. However, after evaluating four different TCP
configurations, we find that there is no configuration of TCP
that can meet all of our requirements (Table 1).
Pass-through with many messages per flow: This approach is
how TCP is typically used, and it has limitations with respect
to supporting mutation, load-balancing and scheduling, and
multi-path and per-entity congestion control. For example,
TCP’s stream abstraction is incompatible with message mu-
tation. If a packet changes in length, then sequence numbers
will be incorrect. L7 parsing is difficult because application-
level messages may occur anywhere in a packet. Different

0.0 0.2 0.4 0.6 0.8 1.0

Tim e (s)

0

250

500

750

1000

1250

1500

1750

B
u

ff
e

r
s
iz

e
 (

M
B

)

Figure 2: Buffer size at proxy
with unlimited receive window

0 100 200 300 400 500 600

Tim e (us)

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Figure 3: One request
per-flow leads to congestion

control issues

replicas cannot process different messages from the same
stream. These properties prevent in-network caches and KVS.

This approach also causes problems with in-network load-
balancing. TCP’s performance is hurt by reordering [2, 10].
TCP does not distinguish between different paths, so end-
hosts will incorrectly react to congestion events on the previ-
ous pathlets. TCP also does not provide multi-bit feedback.
Termination with many messages per flow: Some network de-
vices like L7 load balancers may terminate TCP connections.
In this configuration, the device accepts incoming connec-
tions from clients and then opens a second TCP connection
to the server. Although this enables mutation, this has key
limitations with respect to buffering and computation require-
ments. On devices like switches and FPGAs, it may not be
feasible to perform TCP processing, and this approach also
suffers from either high buffering and HOL-blocking.

We performed experiments to show that TCP termination
has a limiting trade-off between buffering requirements and
head-of-line (HOL) blocking latency (Figure 2). In this ex-
periment, there is a proxy with a 100 Gbps connection to the
client and a 40 Gbps connection to the server. Connections are
terminated at the proxy and new traffic is generated between
the proxy and sink. As expected, we observed significant
buffer buildup at the proxy node over time due to the rate
mismatch. We repeated the same experiment but we limited
the size of the TCP receive window advertised by the proxy.
In this case, we observed HOL-blocking.
One message per flow (Both Passthrough and Termination):
Sending a single message per flow is not a viable approach
because it can interfere with congestion control, especially
for small messages. Figure 3 shows this noisy behavior when
4 hosts in a dumbbell topology with 100Gbps links generate
16KB messages with a new connection for each message.

63

HotNets’21, November 10-12, 2021, Virtual Event, UK Stephens, Grassi, Almasi, Ji, Vamanan, and Akella

2.4 Limitations of RDMA
RDMA provides a message transport like MTP, but it falls
short of our requirements for in-network computing. RDMA
provides three transport service modes: reliable connection
(RC), unreliable connection (UC) and unreliable datagram
(UD) [28]. RC and UC support large messages that span
multiple packets while the size of a UD message is limited
by the packet length. Similar to TCP, RDMA RC and UC
use the packet sequence number for flow control, so it is
non-trivial to support data mutations that extend a message to
more fragments. Unlike TCP, RDMA RC and UC do not co-
locate parts of two messages in one packet, which simplifies
the buffering and computation needed to perform L7 parsing.
However, both RC and UC mandate in-order packet delivery
within a connection [27], which effectively disables the use of
multiple paths because out-of-order packets are considered a
sign of packet loss, even if they belong to different messages
and are not actually lost. RDMA is not designed with support
for multi-bit feedback or multi-entity isolation.

3 MTP DESIGN
This section presents the design of MTP, a new message
transport protocol that is designed to be compatible with in-
network computing. There are two key aspects of MTP that
that allow it to meet the requirements in Section 2.2. First,
MTP is message-oriented in that it groups packets together
into messages instead of streams. This enables data mutation,
low buffering and computation requirements, load-balancing,
and scheduling. Second, MTP introduces pathlet congestion
control, a new approach that enables multi-algorithm and
multi-resource congestion control.

3.1 MTP Overview
3.1.1 Packet Header Overview. Figure 4 provides an

illustration of the fields in an MTP header. These fields facili-
tate the message transport and pathlet congestion control.

First, the packet header starts with a source port and desti-
nation port. As in TCP and UDP, this information is used to
route messages to the appropriate applications on a server.

The header also contains message-level information. This
starts with a Msg ID field, which is a unique ID amongst
all outstanding messages from the end-host. There is also a
priority that is assigned by the application that is an integer
describing the relative priority of parallel messages. Next,
there are fields that describe the message length in bytes
and packets, the offset and length of the current packet in
bytes, and the current packet number. These fields provide
the information needed for retransmission.

The rest of the information in the packet header is used
for pathlet congestion control. There is a list of paths that
the source is requesting the network to exclude from use

with this packet. After that, there are two lists of Path
ID, Feedback pairs that are used to evolve the congestion
windows. The first list Path Feedback is initially empty
when a packet is generated and is modified by the network de-
vices the packet goes through. When the destination receives
a packet with a path feedback list, it then copies this list
to the ACK Path Feedback list in the header of the ac-
knowledgement reply sent from the destination to the source.
Finally, the packet header contains SACK and NACK lists
used to selectively acknowledge and negatively acknowledge
the different packets in messages.

3.1.2 Message Transport. In MTP, every message is
independent, and connections are not established before mes-
sages are sent. End-hosts place information about the ID and
size of the message in every packet of the message. This en-
ables devices to be able to easily parse messages and know
in advance how much buffering is needed to process a mes-
sage. Devices are allowed to drop packets on overload, al-
though network devices may also provide lossless forwarding.
Acknowledgements and retransmissions are performed with
respect to message IDs and packet numbers, not bytes, and
pathlet information is used for reproducible retransmission.

The devices inside the network are allowed to mutate mes-
sages by changing data, packet lengths, and the number of
packets in a message. However, this introduces challenges
with respect to consistency. If the packets in a message are
split across different paths and network devices, then the
message may be corrupted and impossible to reassemble.

To ensure message-level consistency, network devices in
MTP must process messages atomically. In other words, the
network is not allowed to reorder packets from a message, and
a message cannot be split across different paths and replicas.

There are two use use cases for generating messages that
we envision for MTP: (1) Facilitating remote procedure calls
(RPCs), and (2) sending bulk data. To facilitate RPCs, all
of the packets for the RPC are placed in the same message,
and each RPC generated by the application is placed in a
separate message. This allows for different requests to be
load-balanced and scheduled while still enabling in-network
caches that need to see an entire request to generate a response.
To support applications generating blobs of data, MTP can
generate new messages for each packet. This enables multi-
plexing and parallelization at the network layer and operates
similar to TCP. A layer beneath the application in a library
or OS service is responsible for reassembling the blob and
reliably handling any packet loss and reordering of messages.

3.1.3 Pathlet Congestion Control. MTP allows dif-
ferent congestion control algorithms to coexist and enables
high-level policies to be easily enforced. To do this, the net-
work communicates pathlet and congestion information via
headers to end-hosts, and end-hosts communicate back to the

64

TCP is Harmful to In-Network Computing HotNets’21, November 10-12, 2021, Virtual Event, UK

Figure 4: The MTP Header Format
network which pathlets the network should not use because
the end-host has received feedback that they are congested.

Congestion feedback is provided at the pathlet granularity,
where pathlets are identified by a unique ID. It is the respon-
sibility of the network to determine how to group resources
and assign pathlets, and there are trade-offs associated with
different granularities. Representing the entire network as a
single pathlet mimics TCP. At the other extreme, every single
resource can be identified as a separate pathlet.

Instead of maintaining per-flow congestion windows, MTP
end-hosts perform per-pathlet congestion control and main-
tain per-pathlet congestion windows. The feedback for each
pathlet is identified by a Type-Length-Value. This allows for
algorithms like RCP [6] and DCTCP [3] to coexist.

Pathlets may be differently congested, and it is possible for
an end-host to be congested on some pathlets and not others.
To handle this scenario, MTP has end-hosts provide feedback
to the network about the pathlets that should not be used.

3.2 Requirements
MTP is able to meet all of the requirements in Section 2.2:
Data Mutation: MTP’s message transport is designed to en-
able data mutation without corrupting packets.
Low Buffering and Computation : MTP allows devices to
make per-message decisions about buffering, and each mes-
sage is easily parsable since messages start at packet 0.
Inter-Message Independence: Messages in MTP are indepen-
dent and may be sent on separate paths and processed by
different network devices.
Multi-Resource and Multi-Algorithm Congestion Control:
Through pathlet congestion control feedback, different seg-
ments can provide different types of network feedback.
Multi-Entity Isolation: For each MTP message, applications
assign a priority, and network pathlets assign a TC. Because
end-hosts evolve congestion windows for each pathlet and
TC pair, this enables per-entity resource allocation.

4 DISCUSSION
There are still some questions to answer about MTP:
Interaction with TCP: MTP can coexist with legacy TCP
devices. In this scenario, the MTP header can be included as
a new TCP option, and MTP devices can bridge TCP islands.
Pathlet ID Choice: Pathlet IDs enable flexibility in how MTP
is used. Using a single pathlet mimics TCP, and using a differ-
ent pathlet for every resource precise feedback but with higher
overheads. How to best define pathlets is an open question.

Packet Header Overheads: Packet headers in MTP can the-
oretically grow to be larger than today’s TCP headers. To
overcome this challenge, we plan to look into ways to reduce
the size of MTP packet headers. For example, feedback can
be aggregated, and feedback can be selectively returned.
Security Considerations: Message data in MTP can be en-
crypted. Encrypting messages makes it harder to accelerate
application-specific computation, but this is still possible by
sharing keys to trusted devices or with privacy preserving
cryptography [41]. Also, this is a general problem with in-
network computing that MTP does not make worse.
Managing Complexity: The use of pathlets makes the com-
plexity of MTP flexible. We expect that the complexity of
supporting our motivating use cases can still be low and man-
ageable. To support this claim, we note that it is simple to use
MTP to support simple use cases:

TCP Congestion Control: If the network is a single pathlet,
MTP can behave as existing congestion control algorithms
like TCP [35], DCTCP [3], and DCQCN [48].

NDP [13]: By design, implementing NDP in MTP is sim-
ple. End-hosts learn about available paths from the network,
and switches generate NACKs to implement packet trimming.

ML Training (e.g. ATP [23]): In-network aggregation
of gradients is challenging for congestion control because
aggregation-levels can change over time. MTP can improve
the precision of congestion control in ATP by making aggre-
gation levels and pathlets explicit.

KVS [16] and Middlebox [21] Offloads: MTP uses pathlets
to improve the resource sharing problems that arise with in-
network KVSes and middleboxes. Using separate pathlets
for an in-network offload allows for a fast in-network KVS
to be fully utilized without overloading slower downstream
replicas, and it enables upstream NFs avoid wasting resources.

5 A STUDY OF POTENTIAL BENEFITS
We demonstrate MTP’s benefits in emerging network scenar-
ios using an implementation in ns-3 simulator [1].

5.1 Multi-path congestion control
When the network frequently changes paths (e.g., dynamic
load balancers), TCP windows will be inaccurate. This can
lead to under and over utilization, and TCP can experience
longer convergence times. In some cases, TCP may not con-
verge at all. Because MTP isolates congestion information for
each pathlet, it does not suffer from this problem.

To quantify this benefit, we consider a scenario where
there are two paths—a fast path (100 Gbps) and a slow path

65

HotNets’21, November 10-12, 2021, Virtual Event, UK Stephens, Grassi, Almasi, Ji, Vamanan, and Akella

0
25
50
75

100

23 24 25Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

DCTCP MTP

Figure 5: Multi-path
CC

Figure 6:
Load-and-request-aware

load balancing

(10 Gbps)—between a sender and a receiver. The first hop
switch periodically alternates between the two paths (e.g.,
an optical switch) every 384 𝜇𝑠. The links have a delay of
1 𝜇𝑠; the switch buffer size and ECN threshold are set at
128 packets and 20 packets, respectively. We start a long-
lasting flow and measure the flow throughput every 32 𝜇𝑠. We
repeat the experiment for DCTCP and MTP, and we compare
their throughput in Figure 5. We observe that MTP (orange)
converges faster than DCTCP (blue) and achieves 33% higher
goodput on average. This experiment shows the potential
benefit of using MTP with optical networks and application-
level load balancers that frequently switch paths.

5.2 Load- and request-aware load balancers
MTP provides more visibility to load balancers about mes-
sage attributes (e.g., size) and allows dynamic path changes
based on load. To show this potential benefit, we compare
ECMP and packet spraying approaches with an MTP-enabled
in-network load balancer that considers both network load
and request size. In this experiment, we have a sender com-
municate with a receiver along two 100 𝐺𝑏𝑝𝑠 paths with one
of them having an additional delay of 1𝜇𝑠. The workload con-
sists of a mix of message sizes (10 KB–1GB). The message
size distribution is skewed toward short messages as per ex-
isting studies [3]. Figure 6 shows tail flow completion times
(99𝑡ℎ percentile). While ECMP suffers higher delays due to
unbalanced path delays, packet spraying incurs higher packet
reordering. In contrast, MTP-based load balancer achieves
near-perfect load balancing without reordering.

5.3 Per-entity isolation
By enabling operators to define and enforce policies at the
level of traffic classes (TC) as opposed to flows or messages,
MTP avoids fairness problems of TCP (e.g., applications with
more flows get a higher share). We demonstrate MTP’s benefit
using a simple policy of fairly sharing bandwidth between two
tenants. We perform an experiment where two tenants send
data to receivers across a common 100 𝐺𝑏𝑝𝑠/10 𝜇𝑠 link via a
common switch. The second tenant generates 8x the number
of messages as the first tenant. We compare three systems:
the baseline uses DCTCP and a single common shared queue
in the switch, the second system uses two separate queues
for each tenant, and an MTP-enabled third system enforces a

0
25
50
75

100

32 34 36 38 40Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

T1 T2

(a) Shared queue

0
25
50
75

100

32 34 36 38 40Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

T1 T2

(b) Separate queue

0
25
50
75

100

32 34 36 38 40Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

T1 T2

(c) MTP + shared
queue

Figure 7: Per-entity isolation
fair-share policy between tenants at the switch ingress with-
out requiring separate queues. Figure 7 shows the aggregate
throughput achieved by the two tenants. We see that with a
shared queue, Tenant 2 achieves roughly 8x throughput than
Tenant 1 (i.e., 80 Gbps vs. 10 Gbps). Both separate queue
and MTP-enabled shared queue achieve nearly equal sharing
of capacity. While providing separate queues for entities is
expensive, MTP provides enough information to switches to
enable policy enforcement without requiring separate queues.

6 RELATED WORK
MTP is inspired by both existing message-based proto-
cols [7, 15, 26] and pathlet routing [11]. Ports and Nelson [34]
point out some similar problems with existing transport pro-
tocols. There are many interesting congestion control algo-
rithms [3, 5, 6, 13, 19, 30, 30]), and MTP is designed to be
able to implement these algorithms. MPTCP splits a stream
into multiple substreams [31], but its congestion response
will likely suffer when in-network load balancing schemes
switch paths. Swift [22] uses delay measurement to identify
bottlenecks in both the network and end-hosts. MTP is also
designed to be able to implement Swift.

7 CONCLUSIONS
Today’s networks look very different than networks did when
TCP was created in 1981 [35], and TCP has become a burden.
We believe it is now time to create a new, clean-slate trans-
port protocol to support in-network computing. This paper
presents the preliminary design of a MTP, a message transport
protocol intended to replace TCP for in-network computing
applications. By providing visibility of message attributes to
the transport layer and by disaggregating congestion feedback
from distinct parts of the network path, MTP seamlessly sup-
ports features required by many applications of in-network
computing. We present results from simulations that demon-
strate the potential benefits of using MTP with modern load
balancers and enforcing stronger isolation policies. Encour-
aged by positive findings, we plan to implement MTP in our
testbed and study its behavior with real applications.
Acknowledgements: We thank our shepherd, Paolo Costa,
and the anonymous reviewers for their feedback. This work
was funded by NSF Awards CNS-2008273, CNS-1942686,
CNS-1850053, CNS-1565277, and CNS-1717039 and by
gifts from Google and Facebook.

66

TCP is Harmful to In-Network Computing HotNets’21, November 10-12, 2021, Virtual Event, UK

REFERENCES
[1] The ns-3 discrete-event network simulator. http://www.nsnam.org.
[2] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,

VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM, V. T.,
MATUS, F., PAN, R., YADAV, N., AND VARGHESE, G. CONGA:
Distributed Congestion-Aware Load Balancing for Datacenters. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2014), SIGCOMM, Association for Computing
Machinery.

[3] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M. Data
Center TCP (DCTCP). In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2010), SIGCOMM,
Association for Computing Machinery.

[4] CHO, I., SAEED, A., FRIED, J., PARK, S. J., ALIZADEH, M., AND

BELAY, A. Overload control for µs-scale rpcs with breakwater. In
USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (2020), USENIX Association.

[5] DONG, M., LI, Q., ZARCHY, D., GODFREY, P. B., AND SCHAPIRA,
M. PCC: Re-architecting congestion control for consistent high per-
formance. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2015), USENIX Association.

[6] DUKKIPATI, N. Rate Control Protocol (Rcp): Congestion Control to
Make Flows Complete Quickly. PhD thesis, Stanford, CA, USA, 2008.
AAI3292347.

[7] DUNNING, D., REGNIER, G., MCALPINE, G., CAMERON, D., SHU-
BERT, B., BERRY, F., MERRITT, A., GRONKE, E., AND DODD, C.
The virtual interface architecture. IEEE Micro 18, 2 (1998), 66–76.

[8] FLOYD, S., RAMAKRISHNAN, D. K. K., AND BLACK, D. L. The
Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168,
Sept. 2001.

[9] GANDHI, R., LIU, H. H., HU, Y. C., LU, G., PADHYE, J., YUAN, L.,
AND ZHANG, M. Duet: Cloud scale load balancing with hardware and
software. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (2014), SIGCOMM, Association for
Computing Machinery.

[10] GHORBANI, S., YANG, Z., GODFREY, P. B., GANJALI, Y., AND

FIROOZSHAHIAN, A. DRILL: Micro Load Balancing for Low-Latency
Data Center Networks. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017), SIGCOMM,
Association for Computing Machinery.

[11] GODFREY, P. B., GANICHEV, I., SHENKER, S., AND STOICA, I. Path-
let routing. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (2009), SIGCOMM, Associa-
tion for Computing Machinery.

[12] GROSVENOR, M. P., SCHWARZKOPF, M., GOG, I., WATSON, R.
N. M., MOORE, A. W., HAND, S., AND CROWCROFT, J. Queues
don’t matter when you can JUMP them! In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI) (2015), USENIX
Association.

[13] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU, A., MOORE,
A. W., ANTICHI, G., AND WÓJCIK, M. Re-architecting datacen-
ter networks and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2017), SIGCOMM, Association for Computing
Machinery.

[14] HE, K., ROZNER, E., AGARWAL, K., FELTER, W., CARTER, J., AND

AKELLA, A. Presto: Edge-based load balancing for fast datacenter
networks. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (2015), SIGCOMM, Association for
Computing Machinery.

[15] Infiniband trade association, 2017.
[16] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N., KIM,

C., AND STOICA, I. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the Symposium on Op-
erating Systems Principles (2017), SOSP, Association for Computing
Machinery.

[17] JOSE, L., YAN, L., ALIZADEH, M., VARGHESE, G., MCKEOWN, N.,
AND KATTI, S. High speed networks need proactive congestion control.
In Proceedings of the ACM Workshop on Hot Topics in Networks (2015),
HotNets, Association for Computing Machinery.

[18] KAFFES, K., CHONG, T., HUMPHRIES, J. T., BELAY, A., MAZ-
IÈRES, D., AND KOZYRAKIS, C. Shinjuku: Preemptive scheduling for
μsecond-scale tail latency. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2019), USENIX Association.

[19] KATABI, D., HANDLEY, M., AND ROHRS, C. Congestion control
for high bandwidth-delay product networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(2002), SIGCOMM, Association for Computing Machinery.

[20] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND

KRISHNAMURTHY, A. High Performance Packet Processing with
FlexNIC. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(2016), ASPLOS, Association for Computing Machinery.

[21] KULKARNI, S. G., ZHANG, W., HWANG, J., RAJAGOPALAN, S.,
RAMAKRISHNAN, K. K., WOOD, T., ARUMAITHURAI, M., AND FU,
X. NFVnice: Dynamic Backpressure and Scheduling for NFV Service
Chains. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (2017), SIGCOMM, Association for
Computing Machinery.

[22] KUMAR, G., DUKKIPATI, N., JANG, K., WASSEL, H. M. G., WU, X.,
MONTAZERI, B., WANG, Y., SPRINGBORN, K., ALFELD, C., RYAN,
M., WETHERALL, D., AND VAHDAT, A. Swift: Delay is simple and
effective for congestion control in the datacenter. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(2020), SIGCOMM, Association for Computing Machinery.

[23] LAO, C., LE, Y., MAHAJAN, K., CHEN, Y., WU, W., AKELLA,
A., AND SWIFT, M. ATP: In-network aggregation for multi-tenant
learning. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2021), USENIX Association.

[24] LI, J., NELSON, J., MICHAEL, E., JIN, X., AND PORTS, D. R. K.
Pegasus: Tolerating skewed workloads in distributed storage with in-
network coherence directories. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2020), USENIX Associa-
tion.

[25] LI, X., SETHI, R., KAMINSKY, M., ANDERSEN, D. G., AND FREED-
MAN, M. J. Be Fast, Cheap and in Control with SwitchKV. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI)
(2016), USENIX Association.

[26] LIU, J., WU, J., AND PANDA, D. K. High Performance RDMA-based
MPI Implementation over InfiniBand. Int. J. Parallel Program. 32, 3
(June 2004), 167–198.

[27] LU, Y., CHEN, G., LI, B., TAN, K., XIONG, Y., CHENG, P., ZHANG,
J., CHEN, E., AND MOSCIBRODA, T. Multi-path transport for RDMA
in datacenters. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2018), USENIX Association.

[28] MELLANOX TECHNOLOGIES. RDMA Aware Networks Programming
User Manual, 2015.

[29] MIAO, R., ZENG, H., KIM, C., LEE, J., AND YU, M. SilkRoad: Mak-
ing Stateful Layer-4 Load Balancing Fast and Cheap Using Switching
ASICs. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (2017), SIGCOMM, Association for
Computing Machinery.

67

http://www.nsnam.org

HotNets’21, November 10-12, 2021, Virtual Event, UK Stephens, Grassi, Almasi, Ji, Vamanan, and Akella

[30] MONTAZERI, B., LI, Y., ALIZADEH, M., AND OUSTERHOUT, J.
Homa: A receiver-driven low-latency transport protocol using network
priorities. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (2018), SIGCOMM, Association for
Computing Machinery.

[31] PAASCH, C., BARRE, S., ET AL. Multipath TCP implementation in
the Linux kernel. Available from http://www.multipath-tcp.org.

[32] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A., GREENBERG,
A., MALTZ, D. A., KERN, R., KUMAR, H., ZIKOS, M., WU, H.,
KIM, C., AND KARRI, N. Ananta: Cloud scale load balancing. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2013), SIGCOMM, Association for Computing
Machinery.

[33] PHOTHILIMTHANA, P. M., LIU, M., KAUFMANN, A., PETER, S.,
BODIK, R., AND ANDERSON, T. Floem: A Programming System for
NIC-Accelerated Network Applications. In Proceedings of the USENIX
Conference on Operating Systems Design and Implementation (2018),
OSDI, USENIX Association.

[34] PORTS, D. R. K., AND NELSON, J. When should the network be the
computer? In Proceedings of the Workshop on Hot Topics in Operating
Systems (2019), HotOS, Association for Computing Machinery.

[35] POSTEL, J. Transmission control protocol. RFC 793, September 1981.
[36] RAGHAVAN, D., LEVIS, P., ZAHARIA, M., AND ZHANG, I. Breakfast

of Champions: Towards Zero-Copy Serialization with NIC Scatter-
Gather. In Proceedings of the Workshop on Hot Topics in Operating
Systems (2021), HotOS, Association for Computing Machinery.

[37] SAPIO, A., CANINI, M., HO, C.-Y., NELSON, J., KALNIS, P.,
KIM, C., KRISHNAMURTHY, A., MOSHREF, M., PORTS, D., AND

RICHTARIK, P. Scaling distributed machine learning with in-network
aggregation. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2021), USENIX Association.

[38] SHARMA, N. K., KAUFMANN, A., ANDERSON, T., KRISHNA-
MURTHY, A., NELSON, J., AND PETER, S. Evaluating the power of
flexible packet processing for network resource allocation. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI)
(2017), USENIX Association.

[39] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNAMURTHY, A.
Approximating fair queueing on reconfigurable switches. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI)

(2018), USENIX Association.
[40] SHARMA, N. K., ZHAO, C., LIU, M., KANNAN, P. G., KIM, C.,

KRISHNAMURTHY, A., AND SIVARAMAN, A. Programmable calendar
queues for high-speed packet scheduling. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2020),
USENIX Association.

[41] SHERRY, J., LAN, C., POPA, R. A., AND RATNASAMY, S. BlindBox:
Deep Packet Inspection over Encrypted Traffic. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(2015), SIGCOMM, Association for Computing Machinery.

[42] SURESH, L., CANINI, M., SCHMID, S., AND FELDMANN, A. C3:
Cutting tail latency in cloud data stores via adaptive replica selection. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (2015), USENIX Association.

[43] WOLNIKOWSKI, A., IBANEZ, S., STONE, J., KIM, C., MANOHAR,
R., AND SOULÉ, R. Zerializer: Towards Zero-Copy Serialization.
In Proceedings of the Workshop on Hot Topics in Operating Systems
(2021), HotOS, Association for Computing Machinery.

[44] YU, Z., WU, J., BRAVERMAN, V., STOICA, I., AND JIN, X. Twenty
Years After: Hierarchical Core-Stateless Fair Queueing. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI)
(2021), USENIX Association.

[45] ZHAO, Z., SADOK, H., ATRE, N., HOE, J. C., SEKAR, V., AND

SHERRY, J. Achieving 100Gbps intrusion prevention on a single server.
In USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI) (2020), USENIX Association.

[46] ZHOU, H., CHEN, M., LIN, Q., WANG, Y., SHE, X., LIU, S., GU,
R., OOI, B. C., AND YANG, J. Overload Control for Scaling WeChat
Microservices. In Proceedings of the ACM Symposium on Cloud Com-
puting (2018), SoCC, Association for Computing Machinery.

[47] ZHU, H., KAFFES, K., CHEN, Z., LIU, Z., KOZYRAKIS, C., STOICA,
I., AND JIN, X. RackSched: A microsecond-scale scheduler for rack-
scale computers. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2020), USENIX Association.

[48] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN, M.,
LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND ZHANG,
M. Congestion control for large-scale RDMA deployments. In Pro-
ceedings of the Conference of the ACM Special Interest Group on
Data Communication (2015), SIGCOMM, Association for Computing
Machinery.

68

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Need for In-Network Computing
	2.2 Transport-Level Requirements
	2.3 Limitations of TCP Variants
	2.4 Limitations of RDMA

	3 MTP Design
	3.1 MTP Overview
	3.2 Requirements

	4 Discussion
	5 A study of potential benefits
	5.1 Multi-path congestion control
	5.2 Load- and request-aware load balancers
	5.3 Per-entity isolation

	6 Related Work
	7 Conclusions
	References

