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Abstract
In-network computing (INC) is being increasingly adopted to
accelerate applications by offloading part of the applications’
computation to network devices. Such application-specific
(L7) offloads have several attributes that the transport proto-
col must work with—they may mutate, intercept, reorder and
delay application messages that span multiple packets. At the
same time the transport must also work with the buffering
and computation constraints of network devices hosting the
L7 offloads. Existing transports and alternative approaches
fall short in these regards. Therefore, we present MTP, the
first transport to natively support INC. MTP is built around
two major components: 1) a novel message-oriented relia-
bility protocol and 2) a resource-specific congestion control
framework. We implement a full-fledged prototype of MTP
based on DPDK. We show the efficacy of MTP in a testbed
with a real INC application as well as with comprehensive
microbenchmarks and large-scale simulations.

1 Introduction
Datacenters today are experiencing ever-increasing demand
for computing with the emerging of large-scale distributed
applications and intensive workloads such as ML/AI and
VR/AR. These applications run heavy computational logic
and rely on infrastructure services (e.g., for caching and
load-balancing) that themselves impose non-trivial computa-
tional needs. In-network computing (INC) has emerged as a
promising approach to meet the resulting compute demand
by leveraging specialized in-network hardware for offloading.
With INC, application-specific and infrastructure processing
functions—which we together refer to as L7 functions—can
be run atop network devices. This can provide vastly im-
proved application throughput and latency compared to ap-
proaches that rely on conventional server architectures [65].

We have seen a blossoming of ideas for offloaded L7
functions (or “L7 offloads”). Examples include key-value
caches [35, 46, 75], file and storage systems [41, 48, 59],
machine learning (ML) tasks [45, 55, 69], transaction and

database systems [32, 34, 70], consensus [47], as well as load
balancing [17, 81]. Alongside, we have seen a growing num-
ber of devices and platforms that can support INC, includ-
ing programmable switches [1–3, 12, 40, 78, 79], and Smart-
NICs [10,53,54,64]. While the growing number of showcases
for INC is promising, we argue that there are fundamental
problems that need to be addressed before INC can be utilized
in a systematic and effective manner to accelerate datacen-
ter computation. This paper focuses on one such problem,
namely the design of an INC-compatible transport protocol.

Despite the wide diversity of INC possibilities and plat-
forms, we argue that all of them need in common a transport
protocol with two properties:

(1) The transport’s basic functions—reliability and conges-
tion control—should work in the face of key attributes of INC,
namely that the L7 offloads can induce mutation, intercept,
reordering and arbitrary delays upon application messages.
For example, an HTTP load balancer can insert cookies to an
HTTP request [17], and an in-network aggregator can delay
producing the result until the straggler provides the input [78].
We detail all such attributes in §2.1.

(2) The transport should not impose additional transport-
specific resource needs on INC hardware (e.g., needing signifi-
cant buffering or state maintenance). Switches and SmartNICs
that host INC have limited memory and compute power.

Most datacenters today use either TCP variants or RDMA
as their transport [29,72,82], and new experimental transports
have emerged, such as the receiver-driven Homa protocol [61].
Unfortunately, none of these transport protocols can accom-
modate the attributes of INC. When used alongside INC, they
result in either broken reliability semantics, poor and ineffec-
tive congestion control, or both (§2.2). Alternative approaches
either have prohibitive compute and memory overheads or
are ad-hoc, eschewing reliability and/or congestion control
while only supporting a subset of the INC attributes (§2.3),
and hence are not widely applicable.

This paper presents MTP (Message Transport Protocol), the
first INC-compatible transport protocol. It makes key design
choices that elevate L7 offloads—how they function and how



they are used in datacenter networks—to first-class entities
from a transport perspective. MTP works on messages as this
aligns with the processing semantics of L7 offloads—all key
decisions in MTP, be they for loss detection/recovery, conges-
tion control or path selection, operate at the message granu-
larity. To handle message mutation, intercept and reordering,
MTP decouples key transport actions, e.g., loss detection and
recovery, from the packet or byte sequence numbers (§4).

MTP recognizes and operates on pathlets, groups of of-
floads that share fate. For example, a pathlet can be either a
single instance of an offload or multiple replicas of an offload
that a NIC load balances across. MTP elicits per-pathlet feed-
back both for MTP’s reliability protocol to set appropriate
timeouts when messages are delayed by pathlets rather than
dropped (§5) and for congestion control to take per-message
decisions on when to transmit and which pathlets to use. This
controls the load on pathlets, avoiding the overloaded ones
and causing load imbalance (§6).

Additionally, using MTP has low overheads: pathlets need
not maintain MTP-specific state and can easily leverage MTP
primitives by generating appropriate ACK packets (§4–6).
The endpoint-maintained state is constant and proportional to
(an upper-bounded) number of in-flight messages and pathlets
in use (Appendix B). The MTP header is only 20 B plus
optionally a 5 B pathlet congestion feedback (Appendix A),
and the ACK primitives have low bandwidth and endpoint
processing overheads (§8.2.3).

To evaluate MTP, we implement a full-fledged MTP pro-
totype based on DPDK [23] and perform end-to-end bench-
marks by running on top of MTP NetCache [35], a real-world
INC application. We show that MTP improves the throughput
by over 15% (§8.1). We conduct comprehensive microbench-
marks (§8.2) showing MTP’s effective loss recovery and con-
gestion control in the face of INC. We also simulate MTP’s
operation at large scales (§8.3) and find that MTP achieves
65% less tail latency and can sustain 10–20% higher loads
compared to TCP under heavy message reordering.

2 Motivation

In this section, we argue that a novel transport for INC is war-
ranted. For that, we capture the essential message operations
that INC performs (§2.1), describe how existing transports
are not compatible with these operations (§2.2), discuss how
the ways in which INC is made to work with transports today
are not widely applicable (§2.3), and extract the requirements
of a novel transport (§2.4).

2.1 On-Path Message Processing
INC enables applications to offload portions of their (L7)

logic to NICs or switches. Traditional offloads, such as net-
work address translation and transmit segmentation offload,
have dedicated network- or transport-level logic and process
the corresponding protocol headers in packets. In contrast,

L7 offloads process application-level (L7) messages, which
are the payloads that span one or more network packets. L7
offloads have more diverse functions. Examples include vari-
ous key-value caches [35, 46, 49], intrusion detection/preven-
tion [80], L7 load balancing [17,81], transaction and database
acceleration [32, 34, 70], as well as in-network aggregation
(INA) for machine learning jobs [45, 55, 69, 78].

These offloads are “on-path”: located on the communica-
tion path between end hosts, and multiple offloads that per-
form different processing (e.g., load balancing and intrusion
detection) or different parts of the same processing (e.g., two
levels of INA [45]) can form a “chain” on the path.

However, the operations that these offloads perform on L7
messages can often interact poorly with the underlying trans-
port, potentially causing low performance and even breaking
the transport protocol. We summarize the operations below
and discuss their impact on transport in the next section.
Mutation. An offload can change the L7 message payload.
At times this can result in changes in the message size and
the number of packets that the message spans. For example,
an HTTP load balancer [17] can inject cookies into HTTP
responses, which makes the response messages longer. The in-
network aggregator of SwitchML [69] replaces the per-worker
gradients in the RDMA message with aggregated gradients.
Intercept. In some scenarios, an offload can explicitly drop a
message so that it does not reach the transport’s receiving end-
point. Some RPC load balancers, for example, can proactively
drop the requests that will anyway violate the service-level
objectives [42].
Reordering. An offload can reorder messages between the
same sender and receiver for two reasons. First, the offload ex-
plicitly does so as part of its logic. Transaction triaging, for ex-
ample, reorders messages to batch similar transactions, which
improves server performance [34]. Second, many hardware
architectures support running replicated instances of the same
offload logic in parallel to improve performance [53, 54, 78].
Messages that take different amounts of processing time at
various instances can finish in a different order.
Delaying. An offload can impose delays on a message in
various cases, and such delays can be long and unpredictable.
(1) Complex INC logic or wimpy hardware: FPGA-based
intrusion detection, for instance, can incur a tail processing
delay of∼4x median for infrequent slow-path processing [80].
Some wimpy SmartNICs can even incur ∼80µs tail delay
(∼2x average) on packet steering [54]. These delays are of
the same order of magnitude as the network fabric delay (10s
of µs [43]). Such offloads themselves are often bottlenecks
and when experiencing high load may incur increased queuing
delay. (2) In some cases, the processing of a message cannot
complete if another message is delayed. E.g., in INA, gradi-
ents cannot be completely aggregated if a straggler worker
delays its part, and mitigating a straggler can take 10s of ms,
which is much higher than the usual aggregation [78] and
network fabric delay.



2.2 Today’s Transports Are Incompatible

We discuss three transports, i.e., TCP (including its variants
such as QUIC [44]), RDMA [29, 82], and Homa [61]. All of
them provide reliability and congestion control, which are
essential transport-layer functions. TCP variants and RDMA
are arguably the most widely adopted transports in production
datacenters. Homa is an emerging receiver-driven transport
providing message transfer semantics with efforts to deploy
it in production [31, 63]. Unfortunately, these transports are
largely incompatible with INC operations which can have a
fundamental impact on the correctness and efficacy of the
transports’ reliability and congestion control.

The TCP variants and RDMA do not work in the face of
mutation, intercept, or reordering. Consider these transports’
reliable delivery: they both use a per-connection continuous
byte/packet sequence number space, and all the bytes/pack-
ets transmitted by the sender must be acknowledged by the
receiver. When an offload mutates a multi-packet message
in a way that changes its length or intercepts it, the byte
and/or packet counts that reach and are ACK’d by the receiver
also change. In that case, the sender cannot correctly decide
if a missing byte/packet needs retransmission, and can be
confused if ACK’d bytes/packets are more than what it has
transmitted. Also, reordering can cause severe out-of-order
packet arrivals resulting in discontinuous received sequence,
which both protocols can interpret as loss and trigger wasteful
retransmission as well as reduction in congestion window.

Homa cannot properly perform loss recovery with mutation.
Homa’s receiver detects missing bytes with a timeout and
asks the sender to retransmit the missing part. However, if the
message is mutated to a different length, the range of bytes
in the mutated message that the receiver asks for is likely not
the same bytes in the original message. Note that Homa could
work with intercept and reordering because the transmission
of each message is independently controlled, and there is no
cross-message state such as a sequence number that can be
disrupted by dropping or reordering messages.

Finally, delaying can also disrupt congestion control in
fundamental ways in all three protocols. TCP and RDMA
rely on some end-to-end measurements such as ECN [8, 82]
and RTT [43, 60] to quickly and accurately detect conges-
tion. These measurements traverse the forward path and are
eventually reflected back to the sender by the receiver. When
messages can be delayed at an offload for unpredictably long,
the measurement might not arrive at the sender in a timely
manner, which prevents the sender from quickly reacting to
congestion. To achieve line rate and low queuing, Homa’s
receiver tries to keep 1 BDP (bandwidth-delay product) of
credits in flight. However, this assumes that both network RTT
and bandwidth is known and constant. With INC, message
mutation that causes changes in length, below-line rate bottle-
neck offloads and unpredictable delays can make it extremely
difficult to accurately control the outstanding credits.

2.3 How INC Works With Transports Today
Some existing INC works have made simplifying assump-

tions or workarounds so that transports can correctly function
with a specific offload. However, such approaches have im-
portant limitations.

One approach to be compatible with INC operations is
for an offload to “terminate” the transport, running both the
receiver- and sender-side protocol logic [28]. However, trans-
port stacks need significant hardware resources on the offload
for transport processing and message buffering. The hardware
limitations of some INC platforms like switches preclude run-
ning transports altogether [55, 69], while the limitations of
others like SmartNICs may limit scalablity and require careful
parallel decomposition and many cores for performance [71].

Furthermore, the simplifying assumptions made by prior
work are also usually unrealistic. For example, prior work
has assumed that an RPC’s length never exceeds one MTU
(maximum transmission unit) and hence can always be carried
by just one packet [35,46,49,53,64]. Other work has assumed
that a new connection can be established for each RPC [81].
However, these don’t generally hold: A significant proportion
of RPCs in datacenters are indeed larger than the MTU [8,61],
and RPCs typically reuse connections because connection
establishment incurs overhead [4].

Some works have proposed workarounds, which usually
cover only the subset of message operations required by the
specific offload and are not generalizable. As a result, these
solutions require case-by-case human efforts to apply to other
use cases. For example, NetReduce [55] accommodates mu-
tation in a way that is transparent to TCP and RDMA, but
the message size must not change. As such, this approach is
not compatible with an HTTP load balancer that adds cook-
ies. Additionally, this approach does not support intercept
or reordering. SwitchML [69] and ATP [45] build their own
transport functions such as reliable delivery based on UDP,
but neither work in the face of intercept. The transaction triag-
ing offload [34] supports intercept and reordering but does
not work amidst mutation of the message (transaction) body.

Others have relied on specific hardware architectures. The
HTTP load balancer [17], for example, accommodates mu-
tation that changes the message length based on NICs that
have general-purpose cores. However, it must maintain per-
connection state that correctly maps between the altered and
original byte sequences, and it must buffer the mutated mes-
sages for retransmission. Maintaining such per-connection
state can be expensive in hardware, and buffering payload
might not be supported by some hardware architectures.

2.4 Design Requirements
We argue for a novel transport that is widely applicable to

INC. Such a transport must meet these requirements:

• Provide correct reliable delivery in all scenarios where
the packets or bytes are altered in the network as a result



of message mutation, intercept, or reordering;
• Provide effective congestion control for all potential bot-

tlenecks in the network, including the network fabric and
slow offloads, despite the delaying of messages.

• Support all kinds of INC hardware without assuming that
special transport-specific state or buffering can be main-
tained by the offload.

We present MTP (Message Transport Protocol), the first
transport designed for INC, satisfying all of these require-
ments.

3 Pathlets

Before describing MTP, we provide a brief overview of path-
lets, which is a key building block. Then, we discuss the in-
frastructure support needed to allow MTP to leverage pathlets
and our assumptions on how pathlets work.

3.1 Pathlets and Grouping
We observe that on the path of a message, between the

transport sender and receiver, there can be multiple offloads,
potentially with different types of computation. For example,
an L7 load balancer [17, 81] can be followed by intrusion de-
tection [80], if the requests can come from untrusted senders.
In a two-level INA deployment, a message can go through
two aggregators on different switches [45].

We refer to each such offload instance on the path as a
pathlet 1. Pathlets that perform the same computation are said
to have the same pathlet type. An ordered chain of pathlet
types defines the computation that the message goes through
in the network.

Instances of a pathlet type can be arranged in two forms.
First, as shown in Figure 1b, offload instances can be at differ-
ent network locations; in this case, as we describe below, MTP
allows a sender to select which specific pathlet instance to use.
Second, as shown in Figure 1a, the instances are co-located
on the same NIC or switch, and an on-NIC/switch scheduler
locally balances their loads [53]. Thus, these should not be
viewed as individual pathlets as the scheduler hides internal
load imbalance or partial failure. MTP groups the latter such
instances together and views them as one pathlet.2

3.2 Pathlet Discovery and Routing
For the MTP transport to work with pathlets, the network

must provide two services: (1) Pathlet discovery: The data-
center network (DCN) should determine the chain of pathlet
types to be used for messages towards a given receiver, and
provide for each type the specific pathlet instances for the

1While inspired by prior art on “pathlet routing” [26] where a pathlet is a
link or set of links, we use the term “pathlet” differently.

2A datacenter operator can conservatively decide to have just one instance
for each pathlet type as default. However, if the operator chooses to expose
multiple pathlets, MTP can offer improved performance.
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(a) Locally load-balanced offloads C0 and C1.
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(b) Non-locally deployed offloads T0 and T1.

Figure 1: Possible deployment models for offload instances that
perform the same computation.

transport to use. (2) Pathlet routing: The network should route
the packets of a message to the transport-selected pathlets in
the same order. We now describe how these services can be
provided in an MTP-enabled DCN.
Discovery. We assume that the applications that leverage INC
capabilities follow the client-server model. When a client
attempts to reach a service, it first queries for the server(s) with
a service discovery protocol (SDP), such as [5, 6]. The SDP
provides, in addition to server addresses, a list of pathlet types
that client messages should go through toward the service. The
client then queries a pathlet registry for the available instances
of each pathlet type and the address of each instance. The
replied pathlet information for the service is cached in the
client host hypervisor or OS for fast retrieval.

This pathlet registry is similar to a service registry that
would back a SDP today. It can be scaled up with standard
sharding techniques that are used for service registries, such
as employing a distributed key-value store [68, 76].
Routing. To reach the pathlets, we employ a form of source
routing. When a client connects to a service, it configures
MTP with the server and pathlet addresses that it queries
from the SDP. When sending messages, MTP encodes the list
of pathlet addresses it selects in the packet header, and the
network forwards the packets through the hops with given
addresses in order, and eventually to the server. This can be
achieved with IPv6 segment routing [22] on commodity off-
the-shelf network devices. We assume that each pathlet has
an IPv6 address.

3.3 Pathlet Processing
We observe that there can be two ways in which the pathlet

gathers data to process: 1) full buffering, where the pathlet
buffers messages in full, and the processing can only be done
when the whole message has arrived at the pathlet; and 2)
streaming, where the pathlet starts processing with partial
messages, and can receive and transmit packets of the mes-
sage while processing. Full buffering can utilize cut-through
forwarding, so the biggest difference between streaming and
full buffering is in the buffering requirements.

We design MTP to cater for full buffering, which we argue
is the most common case, for two reasons. First, applica-



tions can often break down large data into packet-sized mes-
sages for offload processing. For example, SwitchML [69]
and ATP [45] encapsulate partial gradients in single-packet
messages to fit in the programmable switch, each message
with an L7 header as application context. Also, for many ap-
plications in datacenters, messages are small, with over 90%
messages each fitting in one Ethernet jumbo frame, and many
offloads also assume single-packet messages [35, 46, 51, 81].

Second, it is usually an application requirement or choice
to process larger messages in whole, in which case the pathlet
should already have the capability to achieve full buffering of
multi-packet messages. For instance, NetReduce [55] works
with large messages that contain ML gradients by relying
on the transport to chunk the message, and the FPGA-based
aggregator can reassemble the message based on transport
sequence numbers.

We note that some applications employ limited-capability
offload hardware, such as Tofino [3], where it is hard to per-
form processing that involves maintaining cross-packet (mes-
sage) state. MTP is still applicable: such offloads can leverage
MTP’s reliability and congestion control primitives by sim-
ply generating appropriate ACK packets (detailed later) upon
receiving a "single-packet message".

We discuss how MTP can be used as a building block to
support streaming applications in §9.

4 Overview

We now present MTP, starting with an overview of its archi-
tectural components and a basic end-to-end workflow.

4.1 MTP Architecture
MTP consists of two major components: (1) a message-

oriented reliability protocol that natively accommodates mes-
sage mutation, intercept and reordering; and (2) a multi-
pathlet congestion control framework that enables congestion
control algorithms to operate effectively in the face of pathlets
causing long and unpredictable delays. Neither component
requires additional state at pathlets. As such, MTP meets all
of the requirements in §2.4.

To design such a reliability protocol, we make a key ob-
servation about why existing transports fall short (§2.2): The
receiver cannot tell whether a missing place in the received
packet or byte sequence is because of loss or intercept/re-
ordering; nor can it, in case of mutation, provide the before-
mutation sequence number for the sender to retransmit. Our
design choice is therefore to rely on the sender to detect losses
with per-message retransmission timeouts (RTOs): The re-
ceiver, upon the arrival of all packets of the message, sends an
end-to-end (E2E) ACK, which disarms the timer. Otherwise
the timer triggers retransmission of the whole message. We
discuss the challenges that come with this design in §5.1.

To enable effective congestion control (CC) under long and
unpredictable delay caused by INC, our framework provides

two primitives. (1) Per-pathlet early congestion feedback: A
pathlet has the choice of communicating its own congestion
state, as well as reflecting any congestion signal along the
path (such as ECN for link congestion), directly back to the
sender in the form of a dedicated packet, that does not incur
additional delay from the offload processing. (2) Per-message
pathlet decision: If multiple same-type pathlets are available,
the congestion control can decide the instance to use on a per-
message basis. This allows quickly steering messages away
from the congestion point. We show how these primitives can
be leveraged to build effective congestion control in §6.

4.2 Basic Workflow
We now walk through an example (Figure 2) of end-to-end

MTP message delivery with in-network mutation.
MTP is connection-based. Each connection endpoint is

bound to an IP address and a port. A flow is defined by the
5-tuple as in TCP. We focus on transport operations over an
established connection. MTP’s connection establishment is
achieved with a three-way handshake similar to TCP.

Before sending the first message, the sender queries the
service and pathlet discovery protocols for pathlets, and CC
remembers these pathlets. To send a message, the application
posts to the MTP stack a message descriptor, which carries
metadata such as the length and location of the message body.
The MTP stack assigns a message number to the descriptor,
which increments in the order of descriptors polled, and stores
the descriptor in the connection state. CC then selects the
pathlets to use for this and subsequent messages and stores
the pathlet addresses in the descriptor.

Once CC determines that this message is admissible into
the network because there is sufficient room in the conges-
tion window, the MTP stack divides the message body into
segments each up to the MSS (maximum segment size, 4096
bytes in this example). A message smaller than the MSS is
sent in one segment of the message length. Each segment is
identified by a segment number unique within the message.
Then MTP encapsulates the pathlet addresses and segments
into packets and transmits them.

Upon receiving the segment, pathlet A immediately gener-
ates a congestion feedback that potentially includes its own
congestion signal and link congestion signal such as ECN.
We explain how the feedback values are decided in §6. Pathlet
A then performs message mutation that increases the mes-
sage size by 8 bytes so that the message now consists of two
segments.

When receiving the first arrived segment of a message, the
receiver creates in its connection state a message descriptor
that keeps track of the received segments of a message with
a bit mask of the received segment numbers. To enable the
receiver to determine when all segments are received, every
segment packet carries the message length, which divided by
MSS gives the number of segments in the message. Once
all segments have arrived, the receiver sends an ACK for the
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Figure 2: The MTP basic workflow with mutation.

(now mutated) message to the sender host. The MTP stack
then provides the message to the receiver application and
notifies the sender application of completion.

This example shows how MTP works with mutation. Note
that the receiver is “passive”: It only sends out the E2E ACK
for fully received messages and does not check the continu-
ity or order of arrived message numbers. Also, the receiver
does not act on out-of-order arrived packets within a message,
and can create the message descriptor based on any segment
packet of a message that arrives first. Therefore, no special
accommodation is needed for reordered messages and even
reordered packets, which can be a result from fine-grained
network load balancing [20]. However, such a passive re-
ceiver design makes it challenging to provide an exactly-once
guarantee, which we discuss in §5.2.

By design, MTP does not guarantee in-order message de-
livery, since this is known to cause head-of-line blocking
between messages, which hurts latency-sensitive applica-
tions [74]. Applications that require ordering can achieve
this by adding their own ordering mechanism [74].

In MTP, a pathlet is expected to output at most one mes-
sage for each incoming message. The pathlet can intercept a
message by sending an E2E ACK to the sender as if the mes-
sage was delivered to the receiver. Otherwise, the pathlet must
forward the message towards the next pathlet or receiver. Any
additional payload generated should be added to a message
in the form of mutation. We leave the support for branching
pathlets in MTP, i.e., multicast, to future work.

5 Reliability

In this section, we discuss the challenges to MTP’s reliability
protocol that arise from the design choices that we have made,
and how we address them.

5.1 Delays and RTOs in MTP
We have previously made the design choice to rely on the

sender to detect losses with per-message RTO. In a legacy
DCN, relying on a constant RTO for loss detection is accept-
able because the network fabric delay is bounded and the
RTT is predictable, and the operator can configure a short
RTO [9, 61]. However, as discussed in §2.1, an offload can
incur a long and unpredictable delay that can be much higher
than the fabric delay. Setting a long RTO for the worst-case
scenario hurts the quickness of loss recovery, whereas a short

RTO causes spurious retransmissions (§8.2.1).
To resolve this, our idea is to distinguish whether the mes-

sage is in the network or in a pathlet that can incur long or
unpredictable delays. With this knowledge, the sender can ap-
ply different RTOs that fit the respective cases. MTP achieves
this with two dedicated types of ACKs as follows.
Pathlet ACKs. A pathlet can leverage two types of ACKs
to notify the sender of the arrival and departure of a mes-
sage, allowing the sender to apply different RTOs. When the
pathlet receives all message segments, it sends a pathlet re-
ceive ACK, or PRX ACK, to the sender to indicate that the
whole message is buffered. Until further notice, the sender
assumes that the message is being processed, and does not
retransmit until the long RTO ("pathlet RTO") is triggered.
When the pathlet finishes message processing and sends all
the segments out, it sends a pathlet transmit ACK, or PTX
ACK, to the sender, indicating that the message has left the
pathlet. Upon PTX ACK, the sender restarts the short RTO
timer for timely retransmission for fabric drops.

Loss of PRX and PTX ACKs does not impact correctness,
since the sender always maintains one RTO timer and will
retransmit upon timeout until eventually getting the E2E ACK
for the message. We prioritize PTX and PRX ACKs, as well as
the E2E ACK in the network so that they are rarely dropped.
Configuring the RTOs. With the pathlet ACKs, the fabric
RTO can be set to the fabric RTT between the furthest hosts
in the network under heavy congestion (i.e., a few hundred
µs [43]), plus the message serialization delay, to prevent false
positives, because such delay is nearly the worst case between
the sender/any pathlet and the next pathlet/receiver. For gen-
erally underutilized networks or latency-sensitive messages,
the fabric RTO can be set shorter but this risks spurious re-
transmissions under sudden congestion.

The pathlet RTO should be set to cover the processing de-
lay and the buffering time under pathlet congestion, which is
known to the pathlet owner and distributed with the SDP
(§3.2), plus the message serialization delay. In practice,
though, assuming the message is seldom lost once buffered
by a pathlet, the pathlet RTO can be set loosely.

5.2 Exactly-Once Guarantee
Most applications are programmed under the assumption

that the transport delivers a message to the receiving appli-
cation exactly once, and it is important that MTP provides
the same semantics. However, MTP’s receiver design (§4.2)
so far does not guarantee this. Suppose a message is success-
fully delivered to the receiving application, the MTP receiver
removes the message descriptor from the connection state,
and the E2E ACK is then dropped; the sender times out and
retransmits the whole message. When the duplicate message
arrives, the MTP receiver cannot realize that the message is
duplicated, and will deliver it to the application again.
Challenge. For the receiver to detect and drop duplicate mes-
sages, it must track some state about the delivered messages.
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The approach must only occupy constant space so as not to
exacerbate the connection state scalability issue in datacen-
ters [37].

A strawman is to leverage a fixed-sized window with the
lower bound representing the highest message number below
which all messages are received and use a bitmap to repre-
sent message numbers received within the window. How-
ever, when messages can be heavily reordered like in an INC-
enabled DCN, a slow-arriving head-of-line (HoL) message
can block the window’s stepping forward, preventing mes-
sages beyond the window from being processed.
Virtual Channels. We devise a scheme called virtual chan-
nels3 to track the delivered messages, which uses constant
per-connection state, and is tolerant to reordering. A virtual
channel (Figure 3) essentially represents the correspondence
between the sender-side state of a message and its receiver-
side counterpart. Each inflight message uses a separate virtual
channel, and each connection maintains a fixed number of
virtual channels (the figure shows 2).

This scheme prevents the delivery of duplicate messages
to the application. Each virtual channel maintains the last
message number fully received. Suppose the E2E ACK from
the receiver is lost, the sender retransmits the message (upper
channel in the figure). Note that the message remains in the
channel upon RTO. The receiver checks the message number
specified in the packets against the last message number. If
they are the same, or the just-received segments bear a smaller
message number, then the just-received segments are dupli-
cates of the last fully received message. The receiver drops
them and retransmits the E2E ACK. On receiving the E2E
ACK the sender removes the message state from the channel,
which then becomes vacant.

When a new message comes from the application, the
sender assigns it to a vacant virtual channel (lower channel in
the figure). The virtual channel starts transmitting segments
when CC provides the pathlets to use and clearance to send.
When the receiver obtains the first arrived segment of the new
message, it finds that a new message has arrived because the
packet bears a greater message number than its last message
number for this virtual channel, then it removes the state of
the last message and creates the state of the new message.

This scheme can tolerate high degrees of reordering be-
cause each virtual channel independently performs message

3We use this term differently from existing works where it refers to the
multiplexing of the physical interconnect in a computer [18, 39].

transfer, and the connection makes progress as long as one
channel does. The number of virtual channels determines
the maximum number of inflight messages and is communi-
cated during connection establishment. Generally, this num-
ber should be set to allow at least one BDP of messages in
flight to sustain the line rate. For example, with 4KB messages
and a network of 40µs RTT (including the usual processing
time of offloads) and 100Gbps line rate,∼122 virtual channels
should achieve the line rate.

6 Congestion Control

MTP provides for congestion control algorithms (CCAs) a
framework that consists of two mechanisms, per-pathlet early
congestion feedback and per-message pathlet selection (§4.1).
We now demonstrate how one can build an effective con-
gestion control solution for INC-enabled DCNs combining
these mechanisms with existing ideas for congestion con-
trol [8, 43, 67, 77].

6.1 Using MTP’s Congestion Feedback
To leverage MTP’s per-pathlet congestion feedback, it is

important to unify the semantics in which different pathlets
express their congestion conditions: Unlike network links,
pathlets have vastly different implementation details and per-
formance characteristics, based on which programmers may
tend to expose distinct congestion information for each path-
let; however, doing so would require many different CCAs to
interpret all the feedback, which is impractical. Also, mixing
different CCAs for different pathlets on a path may cause
interference among the CCAs.

To this end, we observe that in an INC-enabled DCN, each
offload must maintain some sort of logical buffer or queue to
temporarily store the pending workload for work conserva-
tion, and the buildup of the buffer or queue indicates offload
congestion. Therefore, we can use 8 bits to map the pathlet
queue or buffer occupancy to 256 quantiles. This is extending
the existing idea of 2-bit queuing encoding [77]. The 8-bit
encoding is then communicated to the sender with MTP’s
dedicated congestion feedback packet.

We then employ the Swift CCA to act on the pathlet feed-
backs, inspired by how it has been used for endpoint con-
gestion [14]. Swift [43] is a datacenter CCA that is highly
effective, achieving very low loss rates at high loads, and
deployed in production. It naturally fits because it reacts on
RTT measurements, which are multi-bit indirect proxies of
the queuing condition that MTP now directly provides, and
because it is the state-of-the-art CCA based on multi-bit feed-
back. Our adapted algorithm essentially adjusts the congestion
window (cwnd) based on the buffer occupancy feedback to
maintain the occupancy at a moderate target level to achieve
work conservation without overflowing, which is detailed in
Appendix C with parameters we adopt in evaluation.

MTP maintains per-pathlet cwnds and updates them in-



dependently to avoid conflicting feedbacks from different
pathlets. It also uses a separate cwnd for link congestion. The
receiver or next pathlet that provides feedback immediately
reflects a marked CE bit to the sender in feedback packets. A
message is only "cleared to be sent" when all pathlet cwnds
and the link cwnd have sufficient room.

6.2 Proactive Pathlet Switching
So far we have assumed that all messages of a flow use the

same sequence of pathlets. However, recall that the network
can provide alternative instances of the same pathlet type (§3).
It has been shown that mapping a flow to a fixed set of network
resources, though the resources might be randomly chosen
with approaches like ECMP, can result in hotspots [67], where
many flows are mapped to the same resource, leaving alterna-
tive resources underutilized. In an INC-enabled DCN, pathlets
are also resources that can become hotspots.

Therefore, it is important to enhance the CCA with the
capability to resolve hotspots, which may further improve
resource utilization. To that end, we complement our CCA
with a mechanism called proactive pathlet switching (PPS).
The idea, inspired by PLB [67], is simple: When congestion
at a pathlet cannot be quickly resolved by the CCA, which
implies that the resource is likely a hotspot, the flow should
be steered to use an alternative pathlet. Specifically, PPS
monitors the congestion state of pathlets: If congestion causes
the CCA to fail to decrease the buffer occupancy reflected
in the multi-bit feedback of a pathlet below a threshold for
some time, then PPS randomly chooses a pathlet from all the
same-type pathlets provided by the DCN for future messages
(Line 14 in Algorithm 1 in Appendix C). This is enabled by
per-message pathlet selection.

7 Implementation

Our implementation has two types of components: an MTP
stack that runs on end-hosts, and wrappers for making L7
offlaods MTP-compatible.
MTP Stack: We used DPDK [23] to implement an MTP stack
prototype for testbed experiments. The prototype adopts a
queue pair (QP)-based API (resembling RDMA’s verbs [57])
for applications to communicate with the MTP stack. The
MTP stack prototype is a process, similar to the Snap
userspace networking system [56]. However, this is not fun-
damental, and the MTP stack could also be implemented as a
library, in the kernel, or offloaded to the NIC.

Different from RDMA, the MTP stack prototype is a pro-
cess, which, unlike the NIC, cannot access arbitrary memory
in the application. Therefore, when creating the QP, the MTP
stack also creates two shared memory regions, one for out-
going (TX) message bodies and one for incoming (RX), and
the application maps the shared message body region to its
address space. These memory regions are asynchronously
accessed by both the application and MTP. To receive a mes-

sage, the MTP stack must allocate space from the RX region
to accommodate the message body; meanwhile, the occu-
pied space of a message can only be freed by the application
when it finishes using the received content, and vice versa
for sending a message. The freeing of message space is not
necessarily in the same order as allocation due to, for exam-
ple, the reordering of messages. We implement a lock-free
memory allocator to efficiently support this.

We encapsulate the MTP API into a shared library called
libmtp, and implement a message generator that works with
this library for evaluating MTP. The MTP stack, libmtp, and
the message generator add up to ∼6K lines of C/C++ code.
Wrapper and Reference Offload: To allow commodity off-
the-shelf L7 offloads to work with MTP, we implement our
own MTP-compatible reference message processing wrap-
pers, for complex L7 offloads or "middleboxes". The wrapper
is implemented over DPDK with the ability to generate PTX
and PRX ACKs, as well as providing early congestion feed-
back. We assume that routing packets from/to the middlebox
is handled by separate switching logic in the INC hardware.

One key challenge is in efficiently utilizing the middlebox’s
buffer: With the assumption of full buffering, the middlebox
cannot start processing a message until all segments have
arrived. When one segment is dropped, the received segments
occupy the buffer until retransmission comes. During this
time other messages that would have been received in full
might be dropped due to the lack of space. Our insight here
is that a partially received message can be removed if the
missing segments don’t arrive within a short timeout. This is
based on the protocol design that MTP messages are always
sent in full and one can expect that the gap between packets
of a message is predictable, only subject to serialization and
fabric queuing delays. In our experiments, we conservatively
set the receive timeout to 100µs.

To aid in our experiments, we embellish the middlebox
wrapper with NetCache (§8.1) and a reference L7 offload. The
reference offload emulates configurable processing time and
buffer size. It reassembles message segments received from
the wrapper, adds processing delay, segments the processed
message and sends the segments out through the wrapper.
This reference middlebox (wrapper and the reference offload)
takes 600 lines of C code.

8 Evaluation

We first perform an end-to-end evaluation with NetCache [35]
an existing INC application, showing that MTP improves its
performance (§8.1). Then in §8.2, we carry out microbench-
marks on testbed to evaluate the two major design aspects of
MTP that accommodate pathlet delaying: the pathlet ACK-
based dual-RTO design for the reliability protocol, as well as
MTP’s congestion control that consists of pathlet feedback
and proactive pathlet switching. We also study the overheads
of pathlet ACKs. After that, we use large-scale simulation in



§8.3 to evaluate MTP’s support for message reordering (at
DCN scale), mutation, and intercept compared to alternatives.

8.1 Application Benchmarks
We adopt NetCache [35], a programmable switch-based

key-value cache offload for this experiment. We run the Net-
Cache client on one node in our testbed and run the NetCache
backend server on another node. Each node has a Intel Xeon
1.8GHz 16-core CPU and 64GB DRAM. The two nodes
are interconnected with 25Gbps Ethernet via a Tofino-based
switch which runs the cache offload. We focus on read opera-
tions . As per our workflow, the vanilla client (which is also
our baseline) encapsulates each read request RPC into a UDP
packet toward the cache offload. For cache hits, the cache di-
rectly appends the value to the packet and sends it back to the
client, and for cache misses, the offload forwards the requests
to the backend server. The client recovers from losses of RPCs
by retrying after a timeout, similar to key-value cache RPC
in production [73]. The MTP-based client achieves the same
workflow by establishing a connection to itself via the cache
and backend, which are two chained pathlets in the path of
this connection, and encapsulating each RPC into an MTP
message. In this workflow, the messages are mutated with
the appended values and can be reordered due to the cache’s
direct reply. Loss recovery is provided by the MTP stack.

The backend is allocated a single CPU core which runs
at ∼1 Mops, and we use a query pattern of 50% hit rate,
with which the system should be able to achieve a maximum
throughput of ∼2 Mops. We add to both the cache and back-
end MTP header parsing logic, as well as to the backend path-
let feedback logic that reflects the RPC queue occupancy. We
set both the UDP-based retry timeout and MTP RTO to 125µs,
which is ∼25 times the RTT to the backend server. Note that
this setup doesn’t require dual RTOs for MTP because the
delays at both pathlets are predictable.

We let the client generate read operations in an open-loop
manner at variable percentages of the max throughput with
Poisson inter-op arrival pattern, and observe the achieved
throughput and tail op latency, as shown in Figure 4. The
MTP-based client can sustain over 95% of system throughput
whereas the UDP-based client starts falling below the offered
load at 80%. Also, the MTP-based client sees no more than
4x p99 op latency relative to that at zero load, while the tail
latency skyrockets with the UDP-based client starting from
75% load. This is because at high loads, the UDP-based client
overflows the server and causes huge amounts of spurious re-
transmission (center figure) that wastes the server throughput,
and this is not the case with MTP that provides pathlet CC,
which limits the RPC buildup and results in negligible drops
and retransmissions. At lower loads, the latency of the MTP-
based client is slightly higher due to the extra processing of
the MTP stack. Such a delay is necessary and inevitable in
providing transport functions, including reliability and con-
gestion control [33, 38, 58, 71].

Component UDP-Based MTP-Based

Cache (P4) 618 687
Client (C++) 825 423

Backend (C++) 323 323

Table 1: Lines of code comparison between UDP-based and
MTP-based NetCache components.

Integration Cost. MTP is of low cost to integrate. Table 1
shows the lines of code (LoC) of UDP- and MTP-based Net-
Cache components. MTP-based cache adds, in addition to the
UDP-based, 69 lines of P4, which mainly includes the MTP
header definition and parsing logic. The additional Tofino re-
source consumption is negligible with only 0.3% more cross-
bar and 2.3% more gateway usage. The MTP-based client is
of much fewer LoC than UDP-based because the MTP-based
client does not need the timeout-retry logic, which along with
DPDK setup is handled by the MTP stack. Also, libmtp is
light-weight to use. The MTP-based backend uses the same
LoC as UDP-based: Coding packet IO with the MTP middle-
box wrapper is of similar complexity to DPDK.

8.2 Microbenchmarks
For microbenchmarks we use CloudLab [21] as our testbed.

We use nodes with AMD EPYC 3.0GHz 16-core CPUs and
128GB DRAM interconnected by 25 Gbps Ethernet. We place
our reference middleboxes on the path between the network
interface and the MTP stack emulating SmartNIC processing
cores [52, 54]. We assign each middlebox on a dedicated
CPU core. Packets that arrive at the host are first handled
by the middlebox, which assembles the message and, after
processing time, re-packetizes the processed message, and
transmits the packets to the MTP stack via a ring buffer.

Though MTP makes no assumption on pathlets’ service
times, we evaluate MTP by making the middleboxes emulate
two commonly-studied long-tail service time distributions:
exponential and bimodal [19, 24, 36, 51, 54, 66].

8.2.1 Dual RTOs with PTX and PRX ACKs
MTP adopts PTX and PRX ACKs to determine whether the

message is being buffered and processed by a pathlet, which
enables using dual RTOs to detect fabric drops (“fabric RTO”)
and failures of message processing pathlets (“pathlet RTO”).
We show the benefits of this with a testbed experiment.

We use our message generator (§7) to issue a flow of
128KB messages from one node to another in a closed loop.
The receiver node enables our reference middlebox. The pro-
cessing time is drawn from either an exponential distribution
with a mean of 100 µs, or a bimodal distribution of a similar
mean with 95%-ile of 50µs and 5%-ile of 1 ms. The receiver
randomly drops 1% of the incoming packets from the inter-
face, which is equivalent to fabric drops from the middlebox’s
and MTP stack’s points of view.

Figure 5 (left) shows a comparison of goodput with a single
per-message end-to-end RTO versus with dual RTOs based on
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Figure 4: Left, Center: achieved throughput and retransmission rate
as percentage of system throughput, respectively; Right: p99 op latency
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(right).
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Figure 6: Convergence under exponential pathlet processing time
distriburion with legacy (left) and MTP (right) CC.
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Figure 7: Per-10ms total goodput with exponential
(left) and bimodal (right) pathlet processing times.

PTX and PRX ACKs. When dual RTOs are used, the X-axis
is the fabric RTO because it is in effect as we set the pathlet
RTO loosely to 4 ms.

Generally, both overly short and long RTOs cause goodput
degradation. Long RTOs impair the sender’s ability to quickly
recover from losses. Short RTOs cause false positives, where
the sender retransmits the messages when they are actually
not lost. The right figure shows the rate of packets received at
the offload that are spurious retransmissions (or "false posi-
tives") and hence dropped. The middlebox determines that a
packet is a false positive if it has buffered the same packet of
the same message. The message can be pending for process-
ing (received in full), being processed, or waiting for other
packets to arrive. We find that MTP’s dual RTO design leads
to a wider range (400-1050 µs) of fabric RTO choices where
MTP achieves >90% goodput with zero false positive (hence
no waste of link bandwidth) for both processing time distribu-
tions because the PRX and PTX ACKs allow the fabric RTO
to not account for the middlebox’s unpredictable processing
time, whereas such range does not exist for single RTO.

8.2.2 Congestion Control
We compare MTP’s CC solution with early multi-bit path-

let feedbacks, reacted by Swift-inspired CCA and PPS, to
a legacy solution, where pathlets provide legacy ECN feed-
back, marking the CE bit in packets when they are congested
(>50% buffer occupancy), and the receiver reflects the per-
packet ECN back to the sender. We use DCTCP [8] to react
on the ECN.
Convergence. We start 8 flows, 2 at each time, of 4KB mes-
sages from 4 sender nodes towards one receiver node that has
a bottleneck middlebox. We configure the middlebox such
that the processing time is drawn from either a exponential
distribution averaging 12 µs or a bimodal distribution of 95%

6 µs and 5% 120 µs. The middlebox has a 32KB message
buffer, which is roughly 4 times the bandwidth-delay product
(BDP). Messages go through this middlebox before entering
the receiver MTP stack.

Figures 6 compare how MTP flows converge based on the
legacy and MTP’s CC solution under exponential processing
time distribution. The results for bimodal distribution can be
found in Appendix D.1. Each line in the figures represents the
throughput of a flow averaged every 10 ms. Most notably, as
more flows share the middlebox, legacy CC fails to converge
whereas MTP stably converges to a fair share. Early and multi-
bit pathlet feedback allows MTP to perform AIMD based on
the extent of congestion collected from each feedback than
having to wait for at least a round trip to collect and smooth
the congestion signals as with single-bit ECN [8].
Proactive Pathlet Switching (PPS). We show how PPS im-
proves performance in addition to congestion control. We use
a similar topology as above, with additionally a secondary
middlebox of the same type on another node, and provide it
to the sender-side MTP stack as an alternative pathlet. We
configure the two middleboxes to be asymmetric such that the
“secondary” incurs either exponential processing times of 24
µs or bimodal of 95%-ile 12 µs and 5%-ile 240 µs. We gen-
erate 4 closed-loop flows, all initially towards the “primary”
pathlet, and expect PPS to distribute the flows across both
pathlets. PPS randomly chooses a middlebox if the buffer
occupancy is above 60% for 3 consecutive feedbacks (MTP
CC) or round trips (legacy CC). We use ECMP as a baseline
and rehash the flows every 100 ms.

Figure 7 shows the cumulative distributions of the total
application-observed throughput every 10 ms. The achieved
throughput can at times exceed the total of the pathlets’ av-
erage throughput because of the long-tail processing time
distributions. We find that for both distributions MTP with



PPS can achieve a total goodput that is ∼98% of the aver-
age total throughput of the two pathlets, whereas with ECMP
can only achieve ∼90%. This is because PPS can quickly
redistribute the flows based on congestion, despite random
choice having a small chance of mapping all flows to the
same pathlet, whereas ECMP cannot recover from such colli-
sion until next rehashing. The legacy CC combined with PPS
achieves slightly lower average throughput than MTP due to
the previously shown convergence problem.

This subsection shows that our CC solution based on
MTP’s primitives is effective in the face of typical process-
ing time distributions, and we also evaluate MTP’s CC with
multiple pathlets in Appendix D.2. However, this is not nec-
essarily the only possible way to use the primitives, and it
is not our goal to innovate on the CCA. There are known
limitations to DCTCP that have been addressed by other
CCAs [11,15,25,27,50,60,61]. We leave a systematic study of
CC for INC to future work, noting that the similar approaches
to evolve from DCTCP may also be used to improve the CC
performance in MTP.

8.2.3 ACK Overheads

MTP leverages PTX and PRX ACKs to communicate mes-
sage states in the network and pathlet feedbacks, in addition
to the E2E ACKs. These extra packets can impose overhead
on both link bandwidth and the endpoints’ processing. We
quantify such overhead with an experiment, where one sender
node sends messages to one receiver node in a closed-loop
manner, with varying numbers of pathlets in between, as well
as different message sizes and enabled ACK types (pathlet
ACKs + feedbacks vs. feedbacks only). We use 2 CPU cores
for the MTP stack in this experiment.

Figure 8 shows the percentage of link bandwidth consumed
by ACK packets. The 0-pathlet bars reflect the overhead of
E2E ACKs only. In general, the ACK bandwidth overhead is
linear in the number of pathlets and the inverse of message
size. This is expected because each pathlet ACKs on a per-
message basis. Enabling both pathlet ACKs and feedbacks
incurs around twice the bandwidth consumption of feedbacks
only, because with the former, each pathlet ACKs twice (PRX,
piggybacked by feedback, and PTX) per message, whereas
with the latter the pathlet sends back only one feedback packet
for each message. The worst case occurs with MTU-sized
(4KB) messages, 2 pathlets and with both pathlet ACKs and
feedbacks enabled, using 6% of link bandwidth, which is
negligible. Note that most (if not all) existing L7 INC works
place two or fewer pathlets in a path.

Figure 9 shows a breakdown of CPU cycles spent by the
sender-side MTP stack with MTU-sized messages, as percent-
ages of total CPU cycles. The total height of a bar represents
the total cycles spent on the receive (RX) routine, which con-
sists of four parts: 1) congestion control update (blue), which
runs the CCA upon feedback; 2) message state update (or-
ange), which resets the timer and switches between the fabric
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and pathlet RTOs; 3) other ACK handling (green), which in-
cludes updating statistics and preparing CC input from statis-
tics (pathlet feedback, ECN, etc. within a round trip); and
4) other RX logic (red), which involves packet header pars-
ing and connection state lookup. Similar to link bandwidth
usage, more CPU cycles are consumed with more pathlets
and pathlet ACKs enabled, which incur higher ACK rates.
Nonetheless, with 2 pathlets, the total CPU usage of RX is
around 55%, still allowing the transmit logic to saturate the
25Gbps link. This is of higher throughput and message rate
than some of the well-optimized user-space TCP [33] and
software RDMA [58] stacks with the same number of cores.

In comparison, UDP does not have ACKs and hence does
not incur similar bandwidth and CPU overheads. However,
UDP also lacks essential transport functions such as reliability
and congestion control. Building basic reliability upon UDP
requires at least end-to-end ACKs which will incur overhead
similar to MTP in the 0-pathlet case.

8.3 Large-Scale Simulation
To study MTP’s support for reordering at scale, we use

ns-3 simulations [7]. We simulate a fat-tree topology with
128 nodes with an over-subscription factor of two. We use
100 Gbps links with varying delays to model asymmetry—
50% of aggregation-core links have a delay of 2 µs and the
rest have a delay of 4 µs. The switches have a buffer size of
975 KB per port,which closely matches datacenter switches.

We generate all-to-all traffic with one-packet messages of
1 KB and a flow size of 1 MB. We use TCP as a baseline,
and both TCP and MTP use the DCTCP [8] for congestion
control (recall that MTP uses DCTCP for link congestion).



We leverage packet spraying to induce message reordering at
scale (our messages are one-packet), instead of simulating L7
offloads. The reordering is exacerbated by the difference in
path delays in our fat tree. Results are shown in Figure 10.

The left figure shows the 99%-ile message completion
times with respect to load, and the center figure shows the
goodput. MTP reduces tail message completion times by
about 65% (speed up of 3.6x) across all loads. MTP is also
able to operate at higher loads (i.e., beyond 80%) without
saturating whereas TCP saturates saturates earlier (i.e., after
60% load).

To understand why MTP’s performance is better, the right
figure show the number of packet retransmissions as a percent-
age of the flows’ original number of packets. We observe that
TCP suffers from 10–15% packet retransmissions and MTP
nearly eliminates such overhead as it is robust to reordering.
Also, TCP saturates at around 60% load, so the percent of
retransmitted packets does not increase after 60% as many
flows do not finish and get backlogged indefinitely. We be-
lieve this is because MTP can precisely respond to congestion
using per-message signals and not misinterpreting reordering
as drops or congestion. Further, we show MTP’s operation
with message mutation and intercept in Appendix E.

9 Discussion

In this section, we discuss the problems that may arise when
applying MTP to real-world production scenarios, and the
potential approaches to tackle them.
Scalability. In §8.2.3, we have shown that MTP’s ACK pack-
ets incur reasonable overhead, to both link bandwidth and
CPU, with up to 2 pathlets. Though we have argued that this
is the case with most existing L7 INC works, more path-
lets may be required in a path with the emergence of more
INC ideas, or with the mixing of offloads from different ap-
plications, which can result in higher ACK overheads. One
potential approach to optimize the ACK overheads is reducing
unnecessary ACKs. In our experiments, when the dual-RTO
mechanism is enabled, all messages would trigger PTX and
PRX ACKs. This is not always necessary if the pathlet’s pro-
cessing delay is short most of the time, in which case the
pathlet can start sending pathlet ACKs only when long delay
is imminent. Similarly, not all messages need to trigger con-
gestion feedback, especially when the pathlet is not heavily
loaded. Also, the CPU overhead of ACKs can be mitigated
by offloading the MTP stack onto a dedicated ASIC, similar
to RDMA.
Streaming. MTP does not natively support streaming, be-
cause doing so requires storing transport state in the pathlet
for handling losses and out-of-order arrival of data segments,
which would complicate MTP and prevent some offload hard-
ware from supporting it. Nevertheless, pathlets that need
streaming can first have the sender break down the stream
into single-packet MTP messages. MTP can provide reliable

per-message delivery and congestion control, on top of which
reordering mechanisms can be implemented at the pathlets
and endpoints.
Security. Though out of our scope, security remains an open
problem for, not just MTP, but INC in general, because INC
involves examining and tampering with packet payload by
the network, which is exactly what today’s transport-layer
security (TLS) strives to prevent. In an effort to resolve this,
mcTLS [62] extends data privacy and integrity to middleboxes
and enables explicitly controlling each middlebox’s read/write
access to the data being transferred. It may be complemen-
tary to MTP and provide similar security features: MTP’s
handshake can be amended with a similar key exchange, and
a TLS record naturally fits in an MTP message. We leave
further investigation into security issues to future work.

10 Other Related Work
There is a significant amount of recent research on developing
new CCAs, including pHost [25], ExpressPass [15], NDP [30],
Homa [61], dcPIM [13], HPCC [50], PINT [11] and BFC [27].
MTP is intentionally designed to be orthogonal and comple-
mentary to these new algorithms as datacenter operators can
switch between CCAs. For example, MTP’s pathlet feedback
may be leveraged to communicate the “clearance to send” in
receiver-driven CC [13, 15, 25, 30, 61], or it can be seen as a
form of in-band network telemetry which has enabled more
precise CC [11, 50]. We leave the study on applying more
CCAs to MTP to future work.

The idea of using pathlets for LB and CC in MTP is inspired
by previous work that uses pathlets for inter-domain routing
in the Internet [26]. MTP itself can be thought of as a practical
realization of the classical application-level framing idea [16]
applied to transport for INC-enabled DCNs.

11 Conclusions
This paper presents MTP, a new message transport protocol
designed to work with INC. Through end-to-end testbed ex-
periments, we found that MTP improves the performance
of an existing INC application. We also showed that MTP
provides effective reliable delivery and congestion control
for INC through microbenchmarks and simulations. As INC
adoption increases in datacenters, we believe that message-
based transport protocols such as MTP that treat offloads as
first-class citizens will become invaluable for scaling applica-
tion performance.
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A MTP Packet Header
Listing 1 shows the MTP packet header formats.

struct mtp_hdr_t { // MTP header
uint16_t src_port ; // source port
uint16_t dst_port ; // destination port
uint16_t len ; // length of this header and payload
uint16_t checksum; // packet checksum
uint32_t msg_no; // message number
uint16_t seg_no; // segment number within the message
struct {

uint8_t msg_ack : 1; // E2E ACK
uint8_t prx_ack : 1; // PRX ACK
uint8_t ptx_ack : 1; // PTX ACK
uint8_t feedback : 1; // pathlet feedback follows
uint8_t reserved : 4;

} flags ;
uint32_t msg_len; // total byte length of message
uint8_t vc; // virtual channel

}; // packed struct

struct mtp_feedback_t { // MTP pathlet feedback header
uint32_t pathlet_id ; // pathlet instance identifier
uint8_t feedback; // feedback value

}; // packed struct

Listing 1: MTP header formats.

B MTP Connection State
Table 2 shows the state maintained per connection.

C MTP Congestion Control Algorithm
Algorithm 1 shows the implementation details of our Swift-
inspired CCA.

D Additional Congestion Control Evaluation

D.1 Convergence
Figure 11 shows the convergence of per-flow goodput with

legacy and MTP CC under bimodal pathlet processing time

Transmission (TX) Connection State

tx_msgs[] Message descriptors for TX, each containing
a message number, message length, pointer to
payload, next-to-send segment number.

tx_vcs[] TX virtual channels, each containing a last mes-
sage number and pointer to the occupying mes-
sage descriptor.

cc_state[] CC state for link and each pathlet, each piece
containing a cwnd, cwnd occupancy and CCA-
specific statistics (§C)

lb_state[] LB state for each type of multi-instance path-
lets, containing statistics for PPS (§6.2)

Receive (RX) Connection State

rx_msgs[] Message descriptors for RX, each containing
a message number, message length, pointer to
payload, and bitmap that marks received seg-
ments.

rx_vcs[] RX virtual channels, each containing a last mes-
sage number and pointer to the occupying mes-
sage descriptor.

Table 2: MTP Connection State.

distribution. This time distribution does not cause severe fluc-
tuation in goodput with many flows, even with legacy CC.
Despite this, MTP CC still mitigates the divergence of legacy
CC with 4 flows (1-2 and 4-5 seconds).
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Figure 11: Convergence under bimodal pathlet processing time
distriburion with legacy (upper) and MTP (lower) CC.

D.2 Multiple Pathlets
There can be more than one pathlet on a path, and it is

important that MTP handles this. We evaluate MTP’s CC
with pathlet chains with different bottleneck locations. We
use the topology in Figure 12, which represents a scenario
where multiple paths share a bottleneck pathlet after some



Algorithm 1: MTP CC and PPS Algorithms
Data: active_pathlettype∀type ∈ path

1 Procedure on_rx_pathlet_feedback(pathlet, feedback, msg_seg_num)
/* Update cwnd with Swift */

2 if f eedback > 127 then
3 cwndpathlet ← (0.4+0.6 128

f eedback ) · cwndpathlet

4 else
5 cwndpathlet ← (1+ msg_seg_num

2·cwndpathlet
) · cwndpathlet

6 end
/* Decide whether to switch pathlet */

7 type← typeo f (pathlet)
8 if pathlet = active_pathlettype ∧ f eedback > 160 then
9 high_congestion_count← high_congestion_count +1

10 else
11 high_congestion_count← 0
12 end
13 if high_congestion_count = 3 then
14 active_pathlettype← random(type)
15 high_congestion_count← 0
16 end

C0

Offload

C1 C2

Offload

C3
Network

S0

Offload

S3…

Node 0 Node 1 Node 2

Figure 12: Multi-pathlet topology. Two client processes on each
of Node 0 and 1 send messages to a server process running on

Node 2. Messages go through both client- and server-side
offloads (pathlets). The bottleneck is the pathlet on Node 2.

Exponential (12 µs) Bimodal (95% 6 µs, 5% 120 µs)
CC Avg Stdev Avg Stdev

MTP 5.24 0.179 5.18 0.363
Legacy 5.30 0.360 5.04 0.544

Table 3: Average and standard deviation of per-10 ms aggregate
goodput in Gbps in chained pathlet topology.

other pathlets. The offloads’ processing times are drawn from
distributions described in Table 3. We use the message gen-
erator as the client to generate 8KB messages (2 segments)
in closed loops, set the offload buffer to 96KB, and configure
the MTP stack to use MTP or legacy CC.

Table 3 shows the statistics on the total goodput across
all flows for every 10 ms. We find that MTP and legacy CC
achieve similar average goodput but the legacy CC yields
100% more standard deviation for exponential distribution
and 50% more for bimodal distribution. This is due to the
drawbacks of legacy end-to-end single-bit feedbacks, similar
to the convergence problem discussed in Section 8.2.2.

E Simulation Results
We use a dumbbell topology to study MTP’s operation with
message mutation and intercept. The topology consists of 8
nodes on each of two sides of the bottleneck. All links are 10
Gbps and 10 µs.
Operation with Message Mutation. We make eight clients
from one side send 4KB (4-segment) messages in a closed-
loop manner to eight servers on the other side. We simulate

Figure 13: MTP operation with mutation.

Figure 14: MTP operation with intercept: fairness (left) & link
utilization (right)

an offload on the switch that (de)compresses data before the
bottleneck link with an average processing delay of 2 µs. This
represents not only compression engines in the real world
but also other offloads such as HTTP load balancer that can
change the message size [17]. The offload randomly chooses
a compression ratio within a given range. A ratio > 1 means a
decrease in message size.

Figure 13 shows the Jain’s fairness index across all clients
(left) and the utilization of the bottleneck link (right). We
observe that MTP achieves good fairness as well as 100% uti-
lization even as the offload decreases or increases the payload
size by as much as 30%. However, fairness begins to deterio-
rate somewhat as the range expands beyond 20% (increase or
decrease). We believe that this is due to DCTCP, which is not
optimal for handling sudden data size changes in the network,
and an optimized CCA for mutation is warranted, which we
leave for future work. Note that TCP would fail to operate
correctly in such cases.
Operation with Message Intercept. Using the above topol-
ogy and workload we simulate an offload, which opportunis-
tically intercepts a message. We vary the intercept rate from
50% to 70% (i.e., with 70% intercept rate, only 30% of mes-
sages will reach the dumbbell bottleneck). MTP remains un-
affected by message intercept. We observe in Figure 14 that
MTP achieves good fairness and full utilization of the bottle-
neck link even as the offload intercepts 50%–70% of messages.
Both TCP and RDMA would fail to operate correctly in such
cases.
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